

TRACE EXPANSIONS AND EQUIVARIANT TRACES FOR AN ALGEBRA OF SHUBIN TYPE FOURIER INTEGRAL OPERATORS ON \mathbb{R}^n

Speaker: Elmar Schrohe Leibniz Universität Hannover

Time: Fri, Dec. 2, 20:00-21:00

Venue: Zoom 618-038-6257, Passcode: SCMS

Abstract:

We consider the algebra \mathscr{B} of all operators on $\mathscr{S}(\mathbb{R}^n)$ given as finite sums

$$B = \sum R_g T_w A,$$

where

- A is a pseudodifferential operator in the Shubin calculus on \mathbb{R}^n
- For $w = a ik \in \mathbb{C}^n$, T_w is the Heisenberg-Weyl operator given by $T_w u(x) = e^{ikx iak/2}u(x-a)$, $u \in L^2(\mathbb{R}^n)$
- $g \mapsto R_g$ represents $g \in U(n) \subset Sp(2n)$ as a metaplectic operator, using the identification $\mathbb{C}^n \cong T^*\mathbb{R}^n$.

It is a consequence of Egorov's theorem for metaplectic operators that this is indeed an algebra.

Choosing an auxiliary operator such as $H = |x|^2 - \Delta$, we obtain expansions for

- $\operatorname{Tr}(B(H-\lambda)^{-K})$ in powers of λ and $\log \lambda$ for K large, as $\lambda \to \infty$ in a sector of \mathbb{C} .
- $\operatorname{Tr}(Be^{-tH})$ as $t \to 0^+$ in powers of t and $\log t$, and
- the pole structure of the meromorphic extension of $\zeta_B(z) = \text{Tr}(BH^{-z})$.

Moreover, we find a noncommutative residue that extends the Wodzicki residue to this situation. For a discrete subgroup G of $\mathbb{C} \times U(n)$ this allows us to define equivariant traces on \mathscr{B} .

Email: scms@fudan.edu.cn

Joint work with Anton Savin, RUDN University, Moscow, Russia.