

THE DIMENSION OF BERNOULLI CONVOLUTIONS IN R^D

Speaker: Haojie Ren
(Technion-Israel Institute of Technology)

Time: Wednesday, July 31, 2024, 14:50-15:50

Venue: Room 102, SCMS

Abstract:

For $(\lambda_1,\cdots,\lambda_d)=\lambda\in(0,1)^d$ with $\lambda_1>\cdots>\lambda_d$, denote by μ_λ the Bernoulli convolution associated to λ . That is, μ_λ is the distribution of the random vector $\sum_{n\geq 0}\pm(\lambda_1^n,\cdots,\lambda_d^n)$, where the \pm signs are chosen independently and with equal weight. Assuming for each $1\leq j\leq d$ that λ_j is not a root of a polynomial with coefficients $\pm 1,0$, we prove that the dimension of μ_λ equals $\min\{\dim_L\mu_\lambda,d\}$, where $\dim_L\mu_\lambda$ is the Lyapunov dimension. This is a joint work with Ariel Rapaport.

Email: scms@fudan.edu.cn