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The Kobayashi conjecture

Kobayashi conjectured the following.

Conjecture

Let H be a general hypersurface in Pn of degree d > 2n + 1, then

1 H is hyperbolic.

2 Pn \ H is hyperbolically embedded in Pn.

Here general means that there exists a non-empty Zariski open
subset

U ⊂ P(H0(Pn,OPn(d)))

such that the conclusion is satisfied for all H ∈ U.
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Remarks on the conjecture

1 If n = 2, then the compact case (1) is obviously true since H

is a curve and g(H) = (d−1)(d−2)
2 .

2 If H ⊂ Pn is a hypersurface of degree d , then

KH = OH(d − N − 1).

In particular, if GGL is true then, if d > N + 2, any smooth
hypersurface wouldn’t contain a Zarski dense entire curve.

3 If d 6 2n − 3 then any H contains a line, in particular, it is
not hyperbolic.

4 For any d , there exists a smooth hypersurface of degree d
containing a line, in particular, the genericity assumption is
essential.
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Algebraic side

1 Voisin, generalizing works of Clemens and Ein, proved that if
d > 2n, then very general hypersurfaces of degree d are
algebraically hyperbolic and that every subvariety is of general
type.

2 Pacienza improved the bound for n > 6 and proved that every
subvariety of a very general hypersurfaces of degree
d > 2n − 2 is of general type.

3 In the logarithmic setting, similar results were obtained by
Pacienza and Rousseau.
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Known results

If one doesn’t care about the bound on the degree in the
conjecture, then the Kobayashi conjecture has now been proven.

Theorem (Siu, B., Deng, Demailly, Diverio-Merker-Rousseau,
Riedl-Yang, Berczi-Kirwan...)

For any N > 2, there exists dN ∈ N such that for any d > dN , a
general hypersurface H ⊂ Pn of degree d is hyperbolic and its
complement is hyperbolically embedded in Pn.

The number dN is explicite, but for now, not optimal.
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Strategies

There are now two types of proof.

1 Wronskian approach : B., Deng, Demailly. Best bound
n2n+3(n + 1).

2 Variational method : Voisin, Siu, Diverio-Merker-Rousseau,
Riedl-Yang, Berczi-Kirwan... Latest developments yields the
bound (2n − 3)6 (in the compact case).

We will for now on focus only on the compact part of the
conjecture, namely the hyperbolicity of hypersurfaces, not their
complements. The complement case can be treated similarly using
logarithmic jet differentials instead. Also, for simplicity, we will not
discuss the bounds in details.
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Invariant jet differentials

Let us first refine a bit the theory of jet differentials introduced last
time. Let X be an n-dimensional complex manifold. Let
pk : JkX → X be its k-th order jet space.
Consider the group of k jets of biholomorphism

Gk =
{
ϕ : t 7→ a1t + a2t

2 + · · ·+ akt
k | a1 ∈ C∗, aj ∈ C ∀j > 2

}
/tk+1.

This group acts on JkX by

ϕ · jk f = jk(f ◦ ϕ).

And we can now look at jet differentials of a given weight with
respect to this action.
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Invariant jet differentials

For any k ,m ∈ N consider the (locally free) subsheaf
Ek,mΩX ⊂ EGG

k,mΩX defined by

Ek,mΩX (U) =

{
ω∈O

(
p−1
k (U)

)
| ω(ϕ·jkγ)=ϕ′(0)mω(jkγ),

∀ϕ∈Gk ∀jkγ∈p−1
k (U)

}
.
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Why consider invariant jets differential?

It is natural to study invariant jet differentials first of all because if
one studies hyperbolicity, one is only concerned with the image of
entire curves, not the way they are parametrized, so it is natural to
take this into account.
Also, in general the bundles Ek,mΩX are expected to have better
positivity properties than the bundles EGG

k,mΩX .
Lastly, there is an interesting geometry behind these differentials,
based on the Demailly-Semple jet tower that we will now describe.
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The Demailly-Semple jet tower

Let X be a complex manifold of dimension n. Let V ⊂ TX be a
rank r sub vector bundle. (We say that (X ,V ) is a directed
manifold).
Set

π : X̃ := P(V )→ X .

Let O
X̃

(−1) be the tautological line bundle on X̃ , by definition,

one has, for any (x , [ξ]) ∈ X̃ (x ∈ X , ξ ∈ Vx \ {0}),

O
X̃

(−1)(x , [ξ]) = Cξ.

This is a subbundle of π∗V ⊆ π∗TX .
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Demailly-Semple jet tower

We can define a rank r vector bundle Ṽ ⊂ TX̃ as follows

Ṽ(x ,[ξ]) :=
{
η ∈ T(x ,[ξ])X̃ ; π∗η ∈ Cξ

}
.

That is to say, it is the vector bundle sitting in the following
diagram

0 // T
X̃/X

// T
X̃

// π∗TX
// 0

0 // T
X̃/X

// Ṽ //

OO

O
X̃

(−1) //

OO

0

Therefore, we get a new directed manifold (X̃ , Ṽ ).
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Demailly-Semple jet tower

A key point of this construction is the lifting property. Let (X ,V )
as before. Take C be any Riemann surface (non necessarily
compact) and take a non-constant morphism f : C → X which is
tangent to V (i.e. f ′(t) ∈ V for all t ∈ C ). Then by differentiating
f , we obtain a map

f̃ : C → X̃

which is tangent to Ṽ and such that

π ◦ f̃ = f .
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Demailly-Semple jet tower

Now we can construct the Demailly-Semple jet tower inductively
using the previous construction.

1 Set (X0,V0) = (X ,TX )..
2 Set (X1,V1) = (X̃0, Ṽ0)
3 For any k > 2, set (Xk ,Vk) = (X̃k−1, Ṽk−1).

For any k , this construction yields a tautological bundle OXk
(1) on

Xk and a map
πk,k−1 : Xk → Xk−1.

Consider also the compostion πk : Xk → X .
For any Riemann surface C , any morphism f : C → X is
canonically lifted to a morphism

f[k] : C → Xk

such that πk ◦ f[k] = f .
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Demailly-Semple jet tower

This construction satisfies the following theorem.

Theorem (Demailly)

With the above notation. Let

JkX
reg =

{
jk f ∈ JkX ; f ′(0) 6= 0

}
.

There exists a divisor X sing
k ⊂ Xk , such that the complement X reg

k
is isomorphic to

JkX
reg/Gk .

Therefore Xk is a compactification of the quotient JkX
reg/Gk .

Let us mention that Gk is not reductive, therefore the existence of
a quotient is not immediate.
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Singular jets

The locus of singular jets X sing
k can be understood very explicitly.

Indeed, for any k > 2 one has an exact sequence

0→ TXk−1/Xk−2
→ Vk−1 → π∗k−1,k−2OXk−2

(−1)→ 0

therefore, Xk = P(Vk−1) contains a divisor

Dk = P(TXk−1/Xk−2
).

By construction, this divisor belongs to

|OXk
(1)⊗ OXk−1

(−1)|.

With this notation

X sing
k =

k⋃
j=2

π−1k,jDj .
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Demailly-Semple jet tower

Crucial to us is the following theorem.

Theorem (Demailly)

Notation as before. For any m ∈ N, one has

(πk)∗OXk
(m) = Ek,mΩX .

In particular, denoting for any a1, . . . , ak ∈ Z

OXk
(a1, . . . , ak) = OX1(a1)⊗ · · · ⊗ OXk

(ak)

the fundamental vanishing theorem, yields,
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Demailly-Semple jet tower

Theorem (Demailly)

For any a1, . . . , ak ∈ N, for any ample line bundle A on X , and any
entire curve f : C→ X. For any

ω ∈ H0(Xk ,OXk
(a1, . . . , ak)⊗ π∗kA−1)

one has
f ∗[k]ω = 0,

Or equivalently, f[k](C) ⊂ (ω = 0). In particular

f[k](C) ⊂ B+(OXk
(a1, . . . , ak)).
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Demailly-Semple jet tower

Therefore, we are reduced to study the positivity of the bundles
OXk

(a1, . . . , ak). One can even go one step further. Suppose

J ⊂ OXk
is an ideal sheaf supported on X sing

k . Let

νk : X̂k → Xk

is a resolution of this ideal which is an isomorphism on X sing
k and

write
O

X̂k
(−E ) = ν−1k J .

Then every entire curve f : C→ X lifts to a curve

f̂[k] : C→ X̂k

such that

f̂[k](C) ⊂ B+(ν∗kOXk
(a1, . . . , ak)⊗ O

X̂k
(−E ))
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Wronskian approach

We will now give some ideas of the proof of the Kobayashi
conjecture relying on Wronskians
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Local Wronskians

We start by a construction of generalized Wronskians.
Given any open subset U ⊂ X and any holomorphic functions
f0, . . . , fk ∈ O(U), one can consider the Wronskian

W (f0, . . . , fk) =

∣∣∣∣∣∣∣∣∣
f0 f1 · · · fk
df0 df1 · · · dfk

...
...

. . .
...

dk f0 dk f1 · · · dk fk

∣∣∣∣∣∣∣∣∣
By an explicite computation, one shows that this is an element of

Ek,k ′ΩX (U)

where k ′ = k(k+1)
2 .
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Global Wronskian

This construction can be globalized in the following way. Let L be
a line bundle on X , for any

σ0, . . . , σk ∈ H0(X , L)

on can set, for any local representative f1, . . . , fk of σ1, . . . , σk over
some trivializing open subset U ⊂ X

W (σ0, . . . , σk) =

∣∣∣∣∣∣∣∣∣
f0 f1 · · · fk
df0 df1 · · · dfk

...
...

. . .
...

dk f0 dk f1 · · · dk fk

∣∣∣∣∣∣∣∣∣ .
One then verifies that this defines an element in

H0(X ,Ek,k ′ΩX ⊗ Lk+1) ∼= H0(Xk ,OXk
(m)⊗ π∗kLk+1).
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Wronskian ideal sheaf

By multilinearity we get a map

Λk+1H0(X , L)→ OXk
(m)⊗ π∗kLk+1

Whose image defines an ideal sheaf wk ⊂ OXk
One verifies that

this ideal sheaf is independent of the choice of L as soon as L
separates k-jets at every point (e.g. L = Ak for a very ample line
bundle A on X .) One also verifies that under this assumption, the
ideal sheaf wk is supported on X sing

k .

In particular, in view of what we said before, if µk : X̂k → Xk is a
suitable resolution of wk and O

X̂k
(−E ) = µ−1k wk then we can

understand the entire curves in X by studying the positivity of the
line bundle

µ∗kOXk
(a1, . . . , ak)⊗ O

X̂k
(−E ).
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Wronskian ideal sheaf

In fact, one can show that this wronskian construction has several
functorial property, in particular in can be performed in families,
and one can also chose a resolution that can be made in families.
The upshot is the following proposition

Proposition

Let ρ : X → B be a smooth family of projective variety. Suppose
that there is a fiber X = X0 of ρ and integers a1, . . . , ak such that
the bundle

µ∗kOXk
(a1, . . . , ak)⊗ O

X̂k
(−E )

is ample, then the same property holds for every fiber Xt for t in a
non-empty Zariski open subset U ⊂ B. And in particular, for any
t ∈ U, Xt is hyperbolic.
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Idea of proof of the Kobayashi conjecture

Therefore, to prove the Kobayashi conjecture, one only needs to
construct a single example of a hypersurface satisfying the strong
positivity property

µ∗kOXk
(a1, . . . , ak)⊗ O

X̂k
(−E )

ample for some k and some a1, . . . , ak .
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Fermat hypersurface

The idea is to construct such an example by deforming slightly a
Fermat type hypersurface. To get a feeling why this might be true,
consider the Fermat hypersurface of degree d , H ⊂ Pn given by

zd0 + · · ·+ zdn = 0.

Let k = n − 1 = dimH. Consider the Wronskian

W (zd1 , . . . , z
d
n ) ∈ H0(H,Ek,k ′ΩH ⊗ OH(dn)).

Here we used k + 1 = n, and zdi ∈ H0(H,OH(d)).
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Fermat hypersurface

The point is that if one does the computation, one observes that

W (zd1 , . . . , z
d
n ) =

∣∣∣∣∣∣∣
zd1 · · · zdn
...

. . .
...

dkzd1 · · · dkzdn

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
zd−k1 zk1 · · · zd−kn zkn
zd−k1 g1

1 · · · zd−kn g1
n

...
. . .

...

zd−k1 gk
1 · · · zd−kn gk

n

∣∣∣∣∣∣∣∣∣ .
For some (locally defined) jet differential forms g j

i . Therefore

W (zd1 , . . . , z
d
n ) is divisible by zd−k1 · · · zd−kn .
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Fermat hypersurface

Using the fact that we are on the Fermat hypersurface, we can
moreover use the relation

zd0 + · · ·+ zdn = 0

and its derivatives, in order to obtain
W (zd1 , . . . , z

d
n ) = −W (zd0 , z

d
2 , . . . , z

d
n ) and the same argument

proves that W (zd1 , . . . , z
d
n ) is also divisible by zd−k0 . Altogether, we

get an element

W (zd1 , . . . , z
d
n )

zd−k0 · · · zd−kn

∈ H0(H,Ek,k ′ΩH ⊗ OH(dn − (n + 1)(d − k))).

But observe that if d > n2, then the twist

dn−(n+1)(d−k)) = dn−(n+1)d+(n+1)(n−1) = −d+n2−1 < 0.
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Fermat hypersurface

Therefore, we have one jet differential (which actually belongs to
the Wronskian ideal sheaf if seen as a global section of OHk

(k ′))
that can be used to control entire curves. It is of course not
enough, since Fermat hypersurfaces always contain entire curves
because they contain lines. But if one deforms suitably the Fermat
hypersurfaces, similar arguments can produce many more such
Wronskian jet differential equations, enough to actually prove the
ampleness of µ∗kOXk

(k ′)⊗ O
X̂k

(−E ).
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Deformation of Fermat type hypersurfaces

Consider an equation of degree ε+ (r + k)δ the form

F =
∑

i0+···+in=δ

ai0,...,inz
(r+k)i0
0 · · · z(r+k)in

n =
∑
|I |=δ

aIZ
(r+k)I .

where ε and δ are “small” integer and r is a “large” integer.
The point of this equation is that by differentiating it up to k
times, the differentials and the initial equation look alike.
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Deformation of Fermat type hypersurfaces

F =
∑
|I |=δ

aIZ
(r+k)I =

∑
|I |=δ

α0
I Z

rI =
∑
|I |=δ

α0
I T

I

dF =
∑
|I |=δ

d(aIZ
(r+k)I ) =

∑
|I |=δ

α1
I Z

rI =
∑
|I |=δ

α1
I T

I

...
...

dkF =
∑
|I |=δ

dk(aIZ
(r+k)I ) =

∑
|I |=δ

αk
I Z

rI =
∑
|I |=δ

αk
I T

I

On the left these are more or less equations for Xk , on the right,
these are more or less the equations of a universal complete
intersection of multidegree (δ, . . . , δ).
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Deformation of Fermat type hypersurfaces

Let Y ⊂ Grk+1(H0(Pn,OPn(δ)))× Pn be the universal complete
interesection of codimension k + 1 and multidegree (δ, · · · , δ)

Y :=
{

(G , z) ∈ Grk+1(H0(Pn,OPn(δ)))× Pn; P(z) = 0 ∀P ∈ G
}
.

Let p1 : Y → Grk+1(H0(Pn,OPn(δ))) denote the fist projection
and p2 : Y → Pn denote the second projection.
For any m ∈ N let

OY (m,−1) = p∗1OGr(m)⊗ p∗2OPn(−1)

be the m-th power of the Plücker line bundle on the Grassmanian
twisted by the tautological line bundle on Pn
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Deformation of Fermat type hypersurfaces

The point is that if one verifies everything, then the above
equations will provide a map

Ψ : Ĥk → Y

satisfying

Ψ∗OY (m,−1) = ν∗kOHk
(mk ′)⊗O

Ĥk
(−mE )⊗πk(m(k+1)(ε+kδ)−r)

and therefore, for r � 1, the twist will be negative. Therefore the
positivity of the tautological bundle on Ĥk can be deduced from
the positivity of p∗1OGr(1). But if k > n− 1, then the morphism p2
is generically finite, and therefore p∗1OGr(1) is big and nef, but
moreover, one knows exactly what its augmented base locus is, it
is the locus of positive dimensional fibers of p1.
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Deformation of Fermat type hypersurfaces

Using this idea, and solving many technical details, one is able to
prove that for suitable constants ε, δ, r and suitable coefficients aI ,
the constructed hypersurface satisfies the desired ampleness of

µ∗kOHk
(k ′)⊗ O

Ĥk
(−E ),

and therefore yields a proof of the Kobayashi conjecture.
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Variational method

Let us now conclude by a brief account on the variational method.
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Differentiating jet differentials

The main idea of the variational method is to start with one jet
differential, and then to differentiate it with meromorphic vector
fields. To be more precise.

Theorem

Suppose that we have a variety X with two ample line bundles
A,B such that.

1 There exists ω ∈ H0(X ,Ek,mΩX ⊗ A−1)

2 The tangent space TJkX ⊗ p∗kB is globally generate over
JkX

reg by Gk invariant vector fields.

3 A⊗ B−m is ample

Then every entire curve in X is contained in the locus
Z = (ω = 0) ⊂ X.
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Idea of Proof

Let f : C→ X be such that f (C) 6⊂ Z . Suppose f (0) 6∈ Z . By the
fundamental vanishing theorem, jk f (0) ∈ (ω = 0), where ω is seen
as a function JkX → A−1. For any Gk invariant vector field in
TJkX ⊗ p∗kB, one can produce a new invariant jet differential

LVω ∈ H0(X ,Ek,mΩX ⊗ A−1 ⊗ B).

Applying inductively this differential procedure, one can find p 6 m
invariant vector field V1, . . . ,Vp in TJkX ⊗ p∗kB, such that

LV1 · · · LVpω ∈ H0(X ,Ek,mΩX ⊗ A−1 ⊗ Bp)

doesn’t vanish at jk f (0). Since p 6 m and A⊗ B−m is ample, we
also have A−1 ⊗ Bp is antiample. Therefore, the fundamental
vanishing theorem gives a contradiction.

Damian Brotbek
Introduction to hyperbolicity Lecture 4 : Hyperbolicity of hypersurfaces



Kobayashi conjecture
Invariant jet differentials

Wronskians approach
Variational method

Differentiating in families

In general, this strategy doesn’t work because one doesn’t have the
crucial vector fields. But for hypersurfaces of high degree, one can
work over the universal family to get a similar argument.
Let

H ⊂ P(H0(Pn,OPn(d)))× Pn

be the universal hypersurfaces of degree d , namely

H = {(P, z) ; P(z) = 0} .

Let us denote by ρ1 : H → PNd := P(H0(Pn,OPn(d))) the first
projection and ρ2 : H → Pn the second projection.
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Relative jet spaces

The jet spaces of every hypersurface fit into a family, the space of
relative jet spaces

pk : Jrelk H →H

We will redo the same argument as before, starting with a
universal jet differential equation, and working with so called
“slanted” vector fields.
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Slanted vector fields

One has the following theorem.

Theorem (Merker)

For k = n − 1, the twisted tangent bundle

TJrelk H ⊗ ρ
∗
1O(n2 + 2n)⊗ ρ∗2O(1)

is globally generated over the regular part Jrelk H reg by global Gk

invariant vector fields.

This result is proven by constructing explicitly generating vector
fields.
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Existence of jet differentials

The second ingredient is the existence of a universal jet differential
with a (very) negative twist. A result in this direction is the
following

Theorem (Diverio-Merker-Rousseau)

For any δ > 0 small enough, there exists dn such that for any
smooth hypersurface H ⊂ Pn of degree d > dN , for any m large
and divisible enough, one has

H0(H,En−1,mΩH ⊗ K−δmH ) 6= 0.

By general arguments, there exists a universal such differential
form over some non-empty open subset U ⊂ P(H0(Pn,OPn(d))),
i.e. one that lives on Jrelk H .
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Idea of proof

It is based on the algebraic version of the holomorphic Morse
inequalities, the relevent special case of which is the following.

Theorem (Holomorphic Morse inequalities)

Let Y be a projective manifold of dimension m. Let F ,G be two
nef line bundles. If

Fm −mFm−1 · G > 0

then F ⊗ G−1 is big.
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Idea of proof (continued)

This can be used to prove for instance that OHk
(1) is big if H is a

hypersurface of degree large enough. Using for instance

F = OHk
(2 · 3k−2, 2 · 3k−3, . . . , 6, 2, 1)⊗ π∗kOH(2 · 3k−1)

and
G = π∗kOH(2 · 3k−1).

A (highly non-trivial) computation will show that the holomorphic
Morse inequalities imply that

OHk
(2 · 3k−2, 2 · 3k−3, . . . , 6, 2, 1)

is big, which also implies that OHk
(1) is big.
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Algebraic degeneracy and hyperbolicity

With those two ingredients, the differentiation argument with
respect to the slanted vector fiels, working out all the details on
the exact values needed for the twists, proves the algebraic
degeneracy of entire curves in general hypersurfaces.
More recently, Riedl and Yang proved that up to increasing even
more the degree, one can deduce from this the hyperbolicity for
general hypersurfaces (i.e. the Kobayashi conjecture).
Even more recently Berczi and Kirwan announced a spectacular
improvement on the bound, by replacing the Demailly-Semple jet
space by another compactification coming from non-reductive GIT
theory in order to perform the intersection computation using the
holomorphic Morse inequalities.
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