Compactifications of Manifolds

Shijie Gu

Northeastern University

gushijie@mail.neu.edu.cn

August 16, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview

- Historical backgrounds of manifold completion
- ► *Z*-compactification
- Pseudo-collarable manifold
- ► The relationship between *Z*-compactification and pseudo-collarability

(ロ)、

A topological manifold is a topological space locally homeomorphic to a Euclidean space \mathbb{R}^n .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A *topological manifold* is a topological space locally homeomorphic to a Euclidean space \mathbb{R}^n .

A manifold with boundary is a space containing both interior points and boundary points. Every interior point has a neighborhood \approx open ball and every bdry point has a nbhd \approx "half" ball.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A *topological manifold* is a topological space locally homeomorphic to a Euclidean space \mathbb{R}^n .

A manifold with boundary is a space containing both interior points and boundary points. Every interior point has a neighborhood \approx open ball and every bdry point has a nbhd \approx "half" ball.

Open manifold (i.e., noncompact manifold with empty bdry)

A *topological manifold* is a topological space locally homeomorphic to a Euclidean space \mathbb{R}^n .

A manifold with boundary is a space containing both interior points and boundary points. Every interior point has a neighborhood \approx open ball and every bdry point has a nbhd \approx "half" ball.

Open manifold (i.e., noncompact manifold with empty bdry)

Closed manifold (i.e., compact manifold with empty bdry)

A topological manifold is a topological space locally homeomorphic to a Euclidean space \mathbb{R}^n .

A manifold with boundary is a space containing both interior points and boundary points. Every interior point has a neighborhood \approx open ball and every bdry point has a nbhd \approx "half" ball.

Open manifold (i.e., noncompact manifold with empty bdry)

- Closed manifold (i.e., compact manifold with empty bdry)
- Noncompact manifold with compact bdry

A topological manifold is a topological space locally homeomorphic to a Euclidean space \mathbb{R}^n .

A manifold with boundary is a space containing both interior points and boundary points. Every interior point has a neighborhood \approx open ball and every bdry point has a nbhd \approx "half" ball.

Open manifold (i.e., noncompact manifold with empty bdry)

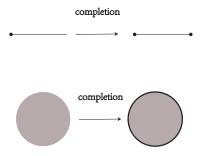
- Closed manifold (i.e., compact manifold with empty bdry)
- Noncompact manifold with compact bdry
- Manifold with noncompact bdry

Completion of Manifolds (a.k.a. collaring problem, missing boundary problem)

A manifold M with (possibly empty) boundary is *completable* if \exists a compact manifold \widehat{M} with boundary and a compactum $C \subseteq \partial \widehat{M}$ such that $\widehat{M} \setminus C$ is homeomorphic to M. \widehat{M} is called a *completion* of M.

Completion of Manifolds (a.k.a. collaring problem, missing boundary problem)

A manifold M with (possibly empty) boundary is *completable* if \exists a compact manifold \widehat{M} with boundary and a compactum $C \subseteq \partial \widehat{M}$ such that $\widehat{M} \setminus C$ is homeomorphic to M. \widehat{M} is called a *completion* of M.



・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

2D Manifold Completion Theorem

Theorem (G & Guilbault 2020)

A connected 2-manifold M^2 is completable iff $H_1(M^2)$ is finitely generated.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

2D Manifold Completion Theorem

Theorem (G & Guilbault 2020)

A connected 2-manifold M^2 is completable iff $H_1(M^2)$ is finitely generated.

This is mainly based on classical work of Kerékjártó (1923) and Richards (1963).

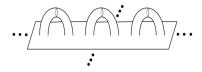
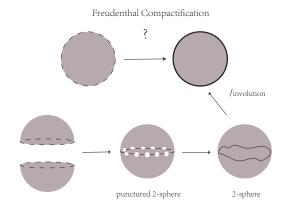


Figure: Infinite Loch Ness Monster

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Kerékjártó-Freudenthal Compactification



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Mine Fields in Higher Dimensions

Direct generalizations of Jordan curve theorem is unavailable.

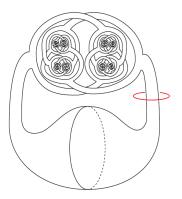


Figure: Alexander Horned Sphere

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The existence of exotic open contractible 3-manifolds.

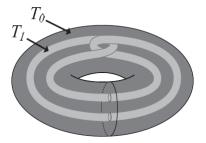


Figure: The first two stages of constructing the Whitehead Manifold

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Fundamental Group at Infinity

Why is the Whitehead manifold not completable, i.e. not homeomorphic to $\mathbb{R}^3?$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Why is the Whitehead manifold not completable, i.e. not homeomorphic to $\mathbb{R}^3?$

Answer: Because it's not simply connected at infinity.

Definition

A space X is said to be *simply connected at infinity* if for all compact subsets C of X, \exists a compact set $D \supset C$ in X so that the induced map $\pi_1(X \setminus D) \rightarrow \pi_1(X \setminus C)$ is trivial.

Characterization of Euclidean Spaces

Theorem (Stallings 1962, Luft '67, Freedman '86, Edwards '63, Perelman 2006)

A contractible open n-manifold ($n \ge 3$) is homeomorphic to \mathbb{R}^n iff it is simply connected at infinity.

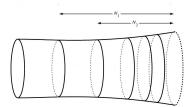
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Characterization of Completable 3-Manifolds

Theorem (Tucker 1974)

A 3-manifold M^3 is completable iff each component of each clean neighborhood of infinity has finitely generated π_1 , modulo the Poincaré Conjecture.

Independently, Husch-Price, Finding boundary for a 3-manifold, Ann. of Math. 91 (1970), 223-235. Kakimizu, Finding boundary for the semistable ends of 3-manifolds, Hiroshima Math. J. 17 (1987), 395-403.



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Characterization of Completable 1-ended Open Manifolds $\mbox{dim}\geq 6$

Theorem (Browder, Levine and Livesay 1965)

Let M^m be a 1-ended open manifold $(m \ge 6)$ that is simply connected at infinity. Then M^m is completable iff $H_*(M; \mathbb{Z})$ is finitely generated.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Characterization of Completable Manifolds dim \geq 6

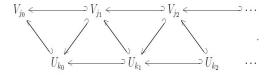
Theorem (Siebenmann 1965)

An m-manifold M^m (m \geq 6) with compact (possibly empty) boundary is completable iff

- 1. pro- π_1 stable at each end of M^m
- 2. M^m is inward tame
- 3. Wall obstruction $\sigma_{\infty}(M^m) = 0$.

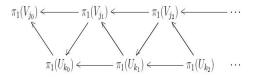
Topological Justification of the pro-isomorphism Relation

Let $U_0 \leftrightarrow U_1 \leftrightarrow \cdots$ and $V_0 \leftrightarrow V_1 \leftrightarrow \cdots$ be two cofinal sequences of connected neighborhoods of infinity for a 1-ended space X. By going out sufficiently far in the second sequence, one arrives at a V_{j_1} contained in U_{k_0} . Similarly, going out sufficiently far in the initial sequence produces a $U_{k_0} \subseteq V_{j_0}$. Alternating back and forth produces a ladder diagram of inclusions



・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Applying the fundamental group functor to that diagram (ignoring base points) results in a diagram



The inverse sequences $\pi_1(U_0) \leftarrow \pi_1(U_1) \leftarrow \cdots$ and $\pi_1(V_0) \leftarrow \pi_1(V_1) \leftarrow \cdots$ are pro-isomorphic.

Let $G_0 \xleftarrow{\lambda_1} G_1 \xleftarrow{\lambda_2} G_3 \xleftarrow{\lambda_3} \cdots$ be an inverse sequence of groups. We say that $\{G_i, \lambda_i\}$ is

▶ *pro-trivial* if it is pro-isomorphic to the trivial inverse sequence $1 \leftarrow 1 \leftarrow 1 \leftarrow \cdots$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $G_0 \xleftarrow{\lambda_1} G_1 \xleftarrow{\lambda_2} G_3 \xleftarrow{\lambda_3} \cdots$ be an inverse sequence of groups. We say that $\{G_i, \lambda_i\}$ is

- ▶ *pro-trivial* if it is pro-isomorphic to the trivial inverse sequence $1 \leftarrow 1 \leftarrow 1 \leftarrow \cdots$
- stable if it is pro-isomorphic to an inverse sequence {H_i, μ_i} where each μ_i is an isomorphism, or equivalently, a constant inverse sequence {H, ld_H}

Let $G_0 \xleftarrow{\lambda_1} G_1 \xleftarrow{\lambda_2} G_3 \xleftarrow{\lambda_3} \cdots$ be an inverse sequence of groups. We say that $\{G_i, \lambda_i\}$ is

- ▶ *pro-trivial* if it is pro-isomorphic to the trivial inverse sequence $1 \leftarrow 1 \leftarrow 1 \leftarrow \cdots$
- ► stable if it is pro-isomorphic to an inverse sequence {H_i, µ_i} where each µ_i is an isomorphism, or equivalently, a constant inverse sequence {H, Id_H}

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 semistable (or Mittag-Leffler, or pro-epimorphic) if it is pro-isomorphic to an {H_i, μ_i}, where each μ_i is an epimorphism

Let $G_0 \xleftarrow{\lambda_1} G_1 \xleftarrow{\lambda_2} G_3 \xleftarrow{\lambda_3} \cdots$ be an inverse sequence of groups. We say that $\{G_i, \lambda_i\}$ is

- ▶ *pro-trivial* if it is pro-isomorphic to the trivial inverse sequence $1 \leftarrow 1 \leftarrow 1 \leftarrow \cdots$
- stable if it is pro-isomorphic to an inverse sequence {H_i, μ_i} where each μ_i is an isomorphism, or equivalently, a constant inverse sequence {H, Id_H}
- semistable (or Mittag-Leffler, or pro-epimorphic) if it is pro-isomorphic to an {H_i, μ_i}, where each μ_i is an epimorphism
- pro-monomorphic if it is pro-isomorphic to an inverse sequence {H_i, μ_i} where each μ_i is an monomorphism.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Characterization of 1-ended Completable Manifolds w/ noncompact Bdry

Theorem (O'Brien 1983)

Suppose M^m is an m-manifold (m \geq 6) and both M^m and ∂M^m are 1-ended. M^m is completable iff

- 1. M^m is peripherally π_1 -stable at infinity,
- 2. M^m is inward tame,
- 3. $\sigma_{\infty}(M^m) = 0$,
- 4. Whitehead torsion $\tau_{\infty}(M^m) = 0$.

Manifold Completion Theorem

Theorem (G & Guilbault 2020)

An m-manifold M^m ($m \neq 4, 5$) is completable iff

- 1. M^m is peripherally π_1 -stable at infinity,
- 2. M^m is inward tame,
- 3. $\sigma_{\infty}(M^m) = 0$,
- 4. $\tau_{\infty}(M^m) = 0.$

Figure: G(L), Siebenmann(M), Guilbault(R) 2018 at Auburn Univ.

Question (Weinberger 1994)

Is there any kind of theory of nontame ends, i.e., manifolds with nonstable π_1 at infinity?

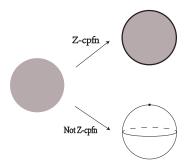
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

\mathcal{Z} -Compactification

A compactification $\hat{X} = X \sqcup Z$ of a space X is a \mathcal{Z} -compactification if, for every open set $U \subseteq \hat{X}, U \setminus Z \hookrightarrow U$ is a homotopy equivalence. Z is called a \mathcal{Z} -set.

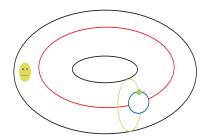
\mathcal{Z} -Compactification

A compactification $\hat{X} = X \sqcup Z$ of a space X is a \mathcal{Z} -compactification if, for every open set $U \subseteq \hat{X}, U \setminus Z \hookrightarrow U$ is a homotopy equivalence. Z is called a \mathcal{Z} -set.

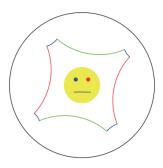


(日) (四) (日) (日) (日)

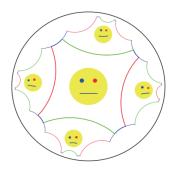
Universal Covering Space of a Punctured Torus

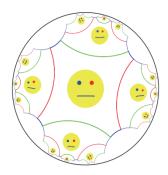


◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

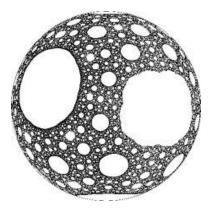


▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●





▲□▶ ▲圖▶ ▲厘▶ ▲厘▶



・ロト ・日 ・ ・ ヨト ・

• Boundaries of δ -hyperbolic groups

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Boundaries of δ -hyperbolic groups

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Boundaries of CAT(0) groups

- Boundaries of δ -hyperbolic groups
- Boundaries of CAT(0) groups
- Compactifications of symmetric and locally symmetric spaces

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Boundaries of δ -hyperbolic groups
- Boundaries of CAT(0) groups
- Compactifications of symmetric and locally symmetric spaces

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Borel Conjecture

- Boundaries of δ -hyperbolic groups
- Boundaries of CAT(0) groups
- Compactifications of symmetric and locally symmetric spaces

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Borel Conjecture
- Novikov Conjecture

A stable π_1 at infinity is necessary in order for manifold completion to exist. But it's too rigid!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

A stable π_1 at infinity is necessary in order for manifold completion to exist. But it's too rigid! The exotic universal covering spaces produced by Mike Davis in

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1983 are not completable.

A stable π_1 at infinity is necessary in order for manifold completion to exist. But it's too rigid!

The exotic universal covering spaces produced by Mike Davis in 1983 are not completable.

Question (soft)

How to characterize the universal covers of Davis' manifolds or similar manifolds?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A stable π_1 at infinity is necessary in order for manifold completion to exist. But it's too rigid!

The exotic universal covering spaces produced by Mike Davis in 1983 are not completable.

Question (soft)

How to characterize the universal covers of Davis' manifolds or similar manifolds?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Answer: Stay tuned.

A stable π_1 at infinity is necessary in order for manifold completion to exist. But it's too rigid!

The exotic universal covering spaces produced by Mike Davis in 1983 are not completable.

Question (soft)

How to characterize the universal covers of Davis' manifolds or similar manifolds?

Answer: Stay tuned.

Question (Guilbault 2016)

Must a closed, aspherical n-manifold $(n \ge 4)$ have pseudo-collarable universal cover?

Pseudo-collarable Manifolds

Definition

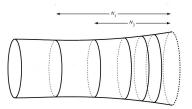
A manifold nbhd of infinity N in a manifold M is a homotopy collar provided Fr $N \hookrightarrow N$ is a homotopy equivalence.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Pseudo-collarable Manifolds

Definition

A manifold nbhd of infinity N in a manifold M is a homotopy collar provided Fr $N \hookrightarrow N$ is a homotopy equivalence. A *pseudo-collar* is a homotopy collar which contains arbitrarily small homotopy collar nbhds of infinity.



Definition

A manifold is *pseudo-collarable* if it contains a pseudo-collar nbhd of infinity.

Characterization of Pseudo-collarable Manifolds with Bdry

Dimension \leq 3, pseudo-collarability is equivalent to completion.

Characterization of Pseudo-collarable Manifolds with Bdry

Dimension \leq 3, pseudo-collarability is equivalent to completion. Dimension \geq 6, Guilbault-Tinsley (2000-2003) provided a full characterization of pseudo-collarable manifolds with **compact** bdry.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Characterization of Pseudo-collarable Manifolds with Bdry

Dimension \leq 3, pseudo-collarability is equivalent to completion. Dimension \geq 6, Guilbault-Tinsley (2000-2003) provided a full characterization of pseudo-collarable manifolds with **compact** bdry.

Theorem (G, 2020)

An m-manifold M^m ($m \ge 6$) is pseudo-collarable iff each of the following conditions holds:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- (a) M^m is peripherally perfectly semistable at infinity,
- (b) M^m is inward tame,
- (c) $\sigma_{\infty}(M^m) = 0.$

Perfect Semistability

A commutator element of a group H is an element of the form $x^{-1}y^{-1}xy$ where $x, y \in H$; and the commutator subgroup of H; denoted [H, H], is the subgroup generated by all of its commutators. The group H is perfect if H = [H, H]. An inverse sequence of groups is perfectly semistable if it is pro-isomorphic to an inverse sequence

$$G_0 \stackrel{\lambda_1}{\longleftarrow} G_1 \stackrel{\lambda_2}{\longleftarrow} G_2 \stackrel{\lambda_3}{\longleftarrow} \cdots$$

of finitely generated groups and surjections where each ker(λ_i) is perfect.

Manifold Completion Theorem and Characterization of Pseudo-collarable Manifolds in dim = 4, 5

In dim = 5, both theorems are true in TOP provided π₁ at infinity is "good" in the sense of Freedman-Quinn.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Manifold Completion Theorem and Characterization of Pseudo-collarable Manifolds in dim = 4, 5

In dim = 5, both theorems are true in TOP provided π₁ at infinity is "good" in the sense of Freedman-Quinn.

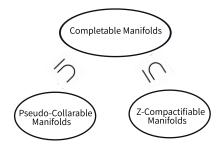
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Both theorems fail in dim = 4. Counterexamples are constructed by Weinberger '87 and Kwasik-Schultz '88, independently.

Relationships among Completable, Pseudo-collarable & \mathcal{Z} -cpfbl Manifolds

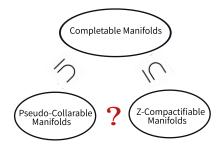
| ◆ □ ▶ ★ □ ▶ ★ □ ▶ | □ ● ○ ○ ○ ○

Relationships among Completable, Pseudo-collarable & \mathcal{Z} -cpfbl Manifolds



・ロト・日本・日本・日本・日本・日本

Relationships among Completable, Pseudo-collarable & \mathcal{Z} -cpfbl Manifolds



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Davis' manifolds are both pseudo-collarable and \mathcal{Z} -compactifiable. Ancel-Siebenmann 1985, Fischer 2003.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Davis' manifolds are both pseudo-collarable and $\mathcal{Z}\text{-}compactifiable.$ Ancel-Siebenmann 1985, Fischer 2003.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Question (Guilbault-Tinsley 2003)

Does *Z*-compactifiability imply pseudo-collarability?

Davis' manifolds are both pseudo-collarable and $\mathcal{Z}\text{-}compactifiable.$ Ancel-Siebenmann 1985, Fischer 2003.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question (Guilbault-Tinsley 2003)

Does *Z*-compactifiability imply pseudo-collarability?

Answer: No

Davis' manifolds are both pseudo-collarable and $\mathcal{Z}\text{-}compactifiable.$ Ancel-Siebenmann 1985, Fischer 2003.

Question (Guilbault-Tinsley 2003)

Does *Z*-compactifiability imply pseudo-collarability?

Answer: No

Theorem (G, 2021)

There exists infinitely many contractible n-manifold M^n ($n \ge 4$) with boundary such that M^n is \mathcal{Z} -cpfbl but not pseudo-collarable.

Ingredient 1: Characterization of Pseudo-collarable Manifolds with Bdry

Theorem (G, 2020)

An m-manifold M^m ($m \ge 6$) is pseudo-collarable iff each of the following conditions holds:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- (a) M^m is peripherally perfectly semistable at infinity,
- (b) M^m is inward tame,
- (c) $\sigma_{\infty}(M^m) = 0.$

Ingredient 2: Bing's manifold

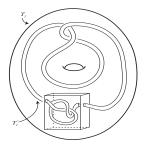


Figure: Two stages of the construction of Bing's manifold

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Ingredient 2: Bing's manifold

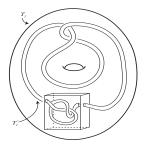


Figure: Two stages of the construction of Bing's manifold

Theorem (G, 2021)

 W^3 embeds as an open subset in no compact, locally connected, locally 1-connected metric 3-space. In particular, W^3 embeds in no compact 3-manifolds.

Ingredient 3: Hypoabelian Groups

Definition

A group G is said to be *hypoabelian* if the following equivalent conditions are satisfied:

- *G* contains no nontrivial perfect subgroup.
- The transfinite derived series terminates at the identity.

Example

- 1. Abelian group
- 2. Solvable groups, residually solvable groups and free groups
- 3. Right-angled Artin group
- 4. The Baumslag-Solitar groups BS(1, n) are solvable, thus, hypoabelian.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

5. Fibered knot group

Hypoabelianity is Closed under Several Algebraic Operations

- 1. Free products of hypoabelian groups are hypoabelian.
- 2. Every extension of a hypoabelian group by a hypoabelian group is hypoabelian.
- 3. Split amalgamated free products of hypoabelian groups are hypoabelian. Howie 1979

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hereditary of Hypoabelianity under Several Knot Operations

Lemma (G, 2021)

- 1. The group of the link complement of the Whitehead link is hypoabelian.
- 2. Let K_C be a non-trivial knot, K_W be a satellite knot and (V_P, K_P) be the pattern. Suppose the knot group of K_C and $\pi_1(V_P \setminus K_P)$ are hypoabelian, and that the Alexander polynomial of K_W is nontrivial. Then the knot group of K_W is hypoabelian.
- Let K₁ and K₂ be knots and G₁ and G₂ be the corresponding knot groups. If G_i is hypoabelian, then the knot group of K₁#K₂ is hypoabelian.

Hypoabelianity and Perfect Semistability

Lemma (Guilbault-Tinsley, 2003) *Let*

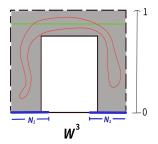
$$G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \cdots$$

be an inverse sequence of groups with surjective but non-injective bonding homomorphism. Suppose each G_i is a hypoabelian group. Then the inverse sequence is not perfectly semistable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$W^3 imes [0,1)$ is a counterexample

First we show that $W^3 \times [0,1)$ admits a \mathcal{Z} -compactification. This follows from a result of Bestvina-Mess, The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991), no. 3, 469-481.



Second, by Guilbault-Tinsley's lemma and the characterization of pseudo-collarable manifolds, it suffices to show that the fundamental group of the end of $W^3 \times [0,1)$ is isomorphic to a sequence of hypoabelian groups. In our case, π_1 at the end is isomorphic to an inverse sequence of "knot groups". That is, let K be a trefoil knot and G be the knot group $\pi_1(S^3 \setminus K)$; let K^{Wh} be a twisted Whitehead double of K and G^{Wh} be the knot group of K^{Wh} , π_1 at the end is isomorphic to

$$G \leftarrow G^{Wh} *_{\mathbb{Z}} G \leftarrow (G^{Wh} *_{\mathbb{Z}} G)^{Wh} *_{\mathbb{Z}} G \leftarrow \cdots$$

Applying the lemmas regarding the hereditary of hypoabelianity under knot operations to complete the proof.

Question

Does there exist an open manifold which is \mathcal{Z} -compactifiable but not pseudo-collarable?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question (Chapman-Siebenmann'76) If an m-manifold M^m ($m \ge 6$) satisfies

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. M^m is inward tame,
- 2. $\sigma_{\infty}(M^m) = 0$, and
- $3. \ \tau_{\infty}=0,$

is $M \mathcal{Z}$ -cpfbl?

Question (Chapman-Siebenmann'76) If an m-manifold M^m ($m \ge 6$) satisfies

- 1. M^m is inward tame,
- 2. $\sigma_{\infty}(M^m) = 0$, and
- $3. \ \tau_{\infty}=0,$
- is M Z-cpfbl?

Yes for Hilbert cube manifolds. Chapman-Siebenmann '76

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question (Chapman-Siebenmann'76) If an m-manifold M^m ($m \ge 6$) satisfies

- 1. M^m is inward tame,
- 2. $\sigma_{\infty}(M^m) = 0$, and
- $3. \ \tau_{\infty}=0,$

is M Z-cpfbl?

Yes for Hilbert cube manifolds. Chapman-Siebenmann '76

Theorem (Ferry 2000)

If a locally finite k-dimensional polyhedron X satisfies Conditions (1)-(3), then $X \times [0,1]^{2k+5}$ is \mathcal{Z} -cpfbl.

Question (Chapman-Siebenmann'76) If an m-manifold M^m ($m \ge 6$) satisfies

- 1. M^m is inward tame,
- 2. $\sigma_{\infty}(M^m) = 0$, and
- $3. \ \tau_{\infty}=0,$

is M Z-cpfbl?

Yes for Hilbert cube manifolds. Chapman-Siebenmann '76

Theorem (Ferry 2000)

If a locally finite k-dimensional polyhedron X satisfies Conditions (1)-(3), then $X \times [0,1]^{2k+5}$ is \mathcal{Z} -cpfbl.

Theorem (G & Guilbault, 2020)

Let M^m be an m-manifold ($m \ge 5$). M^m satisfies Conditions (1)-(3) iff $M^m \times [0,1]$ is \mathcal{Z} -cpfbl.

Pseudo-collarability $\implies \mathcal{Z}$ -compactifiability?

Question

Does Pseudo-collarability imply *Z*-compactifiability?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Pseudo-collarability $\implies \mathcal{Z}$ -compactifiability?

Question

Does Pseudo-collarability imply \mathcal{Z} -compactifiability?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Answer: No

Pseudo-collarability $\implies \mathcal{Z}$ -compactifiability?

Question

Does Pseudo-collarability imply *Z*-compactifiability?

Answer: No

Theorem (G. in progress)

There exists an n-manifold M^n $(n \ge 4)$ satisfying Conditions (1)-(3) but not admitting a \mathcal{Z} -compactification. In particular, M can be pseudo-collarable.

Thank you for your attention.

References

- ► S. Gu, Z-compactifiable manifolds which are not pseudo-collarable, Algebr. Geom. Topol., to appear. arxiv: 2008.13615.
- S. Gu, Contractible open manifolds which embed in no compact, locally connected, locally 1-connected metric space, Algebr. Geom. Topol. 21 (2021), no. 3, 1327–1350.
- S. Gu, Characterization of pseudo-collarable manifolds with boundary, Michigan Math. J. 69 (2020), no. 4, 733–750.
- S. Gu, C. R. Guilbault, Compactifications of manifolds with boundary, J. Topol. Anal. 12 (2020), no. 4, 1073–1101.
- L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, ProQuest LLC, Ann Arbor, MI, 1965, Thesis (Ph.D.)-Princeton University.
- T. W. Tucker, Non-compact 3-manifolds and the missing-boundary problem, Topology 13 (1974), 267–273.