Involvents defined by multiplier ideal showers.
Def.
$$(X, D)$$
, $D \ge 0$, O -diviser
 $\cdot (X, D)$, $D \ge 0$, O -diviser
 $\cdot (X, D)$, $D \ge 0$, O -diviser
 $\cdot (X, D)$, $D \ge 0$, O -diviser
 $\cdot (X, D)$, $D \ge 0$, O -diviser
 I , I , C , $(\log converticel)$, \mathcal{Y} , $V < (-\varepsilon)D$, $= J((-\varepsilon)C_D) = O_X$.
Exercise 1.
 $M_Y / \underline{S}_{SST}$: prove three (X, D) is left \mathcal{Y} and $E(X_X - \mu \times D) > -1$ for any
prime divisor E appearing in the log resolution μ : $\hat{X} \rightarrow X$ of (X, D) .
Def. $D \ge 0$, O -divise.
the log convolution dimethold (J.C.+) of D at x is $Icf(D,x) = \inf\{Ice[O] = I(X_X - D_X)$.
Exercise 2.
 $I^{M_Y} / \underline{S}_{SST}$: I_Y M_I : $\hat{X} \rightarrow X$ \bar{I}_S a log resolution of (X, D) , with $\mu \times D = \sum_Y E_S$
 $K_S/X = \sum I_S E_S$
 H_{PM} , $J_Ct(D, x) = \min\{\int \frac{D_S + 1}{F_S} \right)$
 $H_Y \rho(E_S) \Rightarrow x$.

Exer. Let
$$f \in O_{\mathbb{C}^n, \mathfrak{T}}$$
, define $C_{\mathbb{X}}(f) = \sup\{t>0 \mid \frac{1}{|Y|^{pt}} \in L_{\mathbb{X}}\}$
Show that $C_{\mathbb{X}}(f) \in \mathbb{Q}$ (indeed, $C_{\mathbb{X}}(f) = \det(\mathbb{Z}_{f}; \mathbb{X})$).

#

Dositive line bolls

 (\bot, h) a hol. line but with a s.m. metric ho. ~ to Chem curvature form $\theta = \frac{1}{2\pi} (\square_{\bot, h_o} \in G(L))$ $(X_{/C}, W)$ compart complex mfol with a Hermitian metric W

25

Recall anomalytic def. of second positivity:
L is called net if
$$\forall \ E>0$$
, $\exists \ a \ sin.$ module h_E , $st. \frac{1}{2\pi} (\Theta_L, h_E > -E\omega)$.
(4) $\forall \ E>0$, $\exists \ Q_E \in C^{\infty}(X, R)$ $st.$ $\Theta + \frac{1}{4} \partial \overline{\partial} Q_E > -E\omega$
anyte if $\exists \ a \ sin.$ Hornithan module $f \ st. \frac{1}{2\pi} (\Theta_L, \overline{f} > \delta\omega)$ for some δ_{20}
(4) $\exists \ \delta_{20}$ and $Q \in C^{\infty}(X, R)$, $st.$ $\Theta + \frac{1}{4} \partial \overline{\partial} q > \delta\omega$
(4) $\exists \ \delta_{20}$ and $Q \in C^{\infty}(X, R)$, $st.$ $\Theta + \frac{1}{4} \partial \overline{\partial} q > \delta\omega$
(4) $\exists \ \delta_{20}$ and $Q \in C^{\infty}(X, R)$, $st.$ $\Theta + \frac{1}{4} \partial \overline{\partial} q > \delta\omega$
(4) $\exists \ \delta_{20}$ and $Q \in C^{\infty}(X, R)$, $st.$ $\Theta + \frac{1}{4} \partial \overline{\partial} q > \delta\omega$
(4) $\exists \ A \ sing.$ module $\overline{f} \ st.$ $\overline{f} \ \overline{\delta_{21}} \ \overline{\delta_{22}} \ \overline{\delta_{21}} \ \overline{\delta_{$

Exercise 3. (true for any compact complex manifold, for simplicity you can assume X is Kaehler.) Exercise 3. (true for any compact complex manifold, for simplicity you can assume X is Kaehler.) Exercise 3. (true for any compact complex manifold, for simplicity you can assume X is Kaehler.) Fixed and find an example 5.t. $psef \neq b$ hef.

algebro-geometric hottons of positivity.
In this setting, assume that
$$X/C$$
 is projective.
L is called perfect if H irred. curve $C = X$, $L \cdot C = G(L) \cdot C \ge 0$
compter if for some $M \in \mathbb{N}$, ML is very compter.

proof of the Lom:

Let
$$P$$
 be a hall polynomial of deg s in V where V is a norther of x .
 X a curle-off function on V sut. Spt $X = |$ near x .
 P a local hole frame of $K_X + L$ on V .

Let $g = \overline{\partial} (P \cdot x \otimes e) = P \overline{\partial} x \otimes e$, then g is a $\overline{\partial}$ -totated $\overline{\partial}$ -chosed (h, i)form with values in L_2 , settistying:

By the C-existence then,
$$\exists a$$
 (no)-from f with values in $\lfloor s,t$.
 $\exists f = g$ and
 $\int_{X} H_{1}^{2}e^{2g} \leq C \int_{X} (a^{2}e^{2g} < \infty)$ $\Rightarrow Od_{x}(f) > 5$
 $\not \geq U(g, x) \geq 1.45 \stackrel{de}{=} e^{2g(h)} \geq (3 - x)^{-2(14)}$ $\Rightarrow Od_{x}(f) > 5$
Let $H = x + g \otimes e^{-\frac{1}{2}}$, then $\exists H = 0$, i.e. $H \in H^{2}(S, K, t^{4})$ and
 $J^{2}H = P$.
 \ddagger
Equivalent:
(D) anylegers. Kodein's embedding then.
(a) peef.
Assume $\lfloor is$ pref in dishn-geometric state, then $d_{x} = Q(g) = \lim_{h \to \infty} \int D_{h}$, where
 D_{h} is effective diary.
Consider the sequence of currents $[D_{h}]$, then the trues of $[D_{h}]$.
 $\| D_{h} \| = \int_{X} (D_{h}) \wedge Q_{h}^{h_{h}} = \{D_{h}\} \cdot \{Q^{h_{h}}\} \rightarrow Q(g) \cdot \{Q^{h_{h}}\}$.
 $\| D_{h} \| = \int_{X} (D_{h}) \wedge Q_{h}^{h_{h}} = \{D_{h}\} \cdot \{Q^{h_{h}}\} \rightarrow Q(g) \cdot \{Q^{h_{h}}\}$.
 $\| D_{h} \| \| \leq C$ for some uniform $C > 0$ (help of h) $\downarrow \Rightarrow$
 $\exists a$ subsequence $[D_{h_{h}}] \rightarrow T > 0$ for some quart T .

In particular,
$$G(L)$$
 address a private C(1) current T
(4) L has a sing mode T s.t. $G(L, T_1) \ge 0$ in the same of currents
(4) L has a sing mode T s.t. $G(L, T_1) \ge 0$ in the same of currents
 $There a prive x_0 e \times x_1$. $V(Q_{L,x}) = 0$.
Let $V_0 = \times n \log |3-x_0|$, where $T \ge \times$ has compare spt $Circle \times = 1$ near x .
In particular, V_0 is $Sint$ on $X/\{x_0\}$ and equiles $N \log |3-x_0|$ here x_0 .
Let A be an ample line hall with a sin meak $h_A \stackrel{in}{=} e^{-2R_A}$, $\frac{1}{T_1} \overline{oold} Q_A > Sint.$
For $n \gg 1$, $n_0 G(A, h_0) + \frac{1}{T_1} \overline{oold}_* > \omega$.
We explose the line hall $k(L + M_0 H)$ with the meaks $h_L \stackrel{in}{=} h Q_1 + h_0 Q_1 + h_0$.
 $\frac{1}{T_1} \overline{oold} Q_1 = e^{\frac{1}{T_1} \overline{oold}_1 + h_0} = n$
 $V(Q_1, x_1) = V(Q_1, x_2) = n$
 $V(Q_1, x_2) = V(Q_1, x_2) \stackrel{in}{T_1} x \in V_0 | \{x_0\}, V_h = n hold of x_0$
 $V(Q_1, x_2) = k U(Q_1, x_2) \stackrel{in}{T_1} x \in V_0 | \{x_0\}, V_h = n hold of x_0$
 $V(Q_1, x_2) = v(x_0, x_0) = n$
 $V(Q_1, x_2) = k U(Q_1, x_2) \stackrel{in}{T_1} x = V(T_1, x_1)$

hopping the Law,
$$k_{X}+k_{L}+i_{B}A$$
 advits a non-iso subject for any $k \ge 1$.
Dende $D_{k} = S_{k}^{-1}(0)$, then:
 $G(L) = \frac{1}{k} \left[f(k_{x}) - i_{B}G(k_{0}) - G(k_{0}) \right] = \lim_{k} \left[f(k_{x}) D_{k} \right]$
Thus, L is perf in the algebra-geometric same.
(3) Bigman.
Assume $k(L)=n$, i.e. $f^{*}(k_{L}) \sim O((k_{0})$ for $k > 1$.
Outsider the answer sequence $O \rightarrow O(k_{L}-h) \xrightarrow{S_{A}} O(k_{L}) \rightarrow O_{A}(k_{L}) \rightarrow 0$,
 k_{M} is a hypersurfule $k + O(A)$ angle.
 $\longrightarrow O \rightarrow H^{*}(X, k_{L}-h) \rightarrow H^{*}(X, k_{L}) \rightarrow H^{*}(h, k_{L}|_{h}) \rightarrow \cdots$
 $O(k^{n}) \leq O(k^{n})$
 $\Rightarrow for k > h_{0}, H^{*}(X, k_{L}-h) \ddagger f^{*}(h), thus $k_{L} = h + D$ for some $D \ge 0$
 $Then Q_{1} = -\frac{1}{k}((h_{1}+G_{0}))$ is a sing metric set $\frac{1}{k} = 5(0)$.
Exercise 4 prove that analytic bigmess implies geometric bigmess.
 \cdot For the other direction, Exerc.
High: apply the law, to $k_{L} = k_{X} + (k_{L}-k_{X})$ and then $k_{L}-k_{X}$ surfulte
 $hoomic$ sit. k_{L} generics L firsts at generic points.$

$$\textcircled{30} \quad \underbrace{\text{hefters}}_{\cdot} \\ \cdot \text{ analytic neff} \implies \text{alg. neft.}, \text{ clear}, \text{ since } Q(L) \cdot C = \int_{C} Q(L) \\ \cdot \downarrow \quad L \cdot C \ge 0 \quad \text{for any irred. curve } O, \text{ then } k \perp tA \quad \text{is cample for any } k \ge 1 \quad \text{and some} \\ \text{fixed anyle time bdl } A. \\ \text{Cyrite } \perp = \quad \frac{1}{k} (k \perp tA) - \frac{1}{k} A, \text{ then } \perp \text{ hay a sim. invertic with Curvedure } \ge -\frac{1}{k} Q(A, h) \\ \# \end{aligned}$$

 $\frac{P_{min.}}{X} \quad \text{The pointivity for line bills can be generalized to any <math>\alpha \in H^{1,1}_{BC}(X, \mathbb{R})$ where X is a compare complex high.

Madel vanishing theorem.
Then
$$(X, \omega)$$
 a Kähler mfd, X weakly pseudo-convex and X contains a
 $(E.g. X proj mfd)$
 L a line bull on X with a sing metric h set. the curvature current
 $G(L,h) \ge 5\omega$.
Then $H^{P}(X, O(K_{X}+L) \otimes J(h)) = 0$ for any $g \ge 1$.
 $Pnof: H g \gg$, $f \in \mathbb{N}$, let $A^{P} = the sheaf of germination measurable series
 $\mathcal{G} \wedge h^{P} \otimes L$ set. $|u|^{2}e^{-2\phi} \in L_{bac}^{1}$$

$$X/C$$
: proj. mid, F : a line bell satisfying $mF = L+D$
 P $=$ effective,
 $hef = big$
 hef

Exercise 5. prove K-V vanishing thrm by using Nadel vanishing

 $\frac{1}{100}f: Exer.$ $Hint: endow F with a sing. meteric (P_F, sit. + 359_F > 5W).$ $J(P_F) = J(m^{1}D).$

#