On product sets of arithmetic progressions

Yunkun Zhou
Stanford University

Time: Dec 16th, 14:00-15:00
Zoom meeting ID: 89190957929 Password: 121323
Link: https://zoom.us/j/89190957929

Abstract:

We prove that the size of the product set of any finite arithmetic progression $\mathcal{A} \subset \mathbb{Z}$ satisfies

$$
|\mathcal{A} \cdot \mathcal{A}| \geq \frac{|\mathcal{A}|^{2}}{(\log |\mathcal{A}|)^{2 \theta+o(1)}}
$$

where $2 \theta=1-(1+\log \log 2) /(\log 2)$ is the constant appearing in the celebrated Erdős multiplication table problem. This confirms a conjecture of Elekes and Ruzsa from about two decades ago.

If instead \mathcal{A} is relaxed to be a subset of a finite arithmetic progression in integers with positive constant density, we prove that

$$
|\mathcal{A} \cdot \mathcal{A}| \geq \frac{|\mathcal{A}|^{2}}{(\log |\mathcal{A}|)^{2 \log 2-1+o(1)}} .
$$

This solves the typical case of another conjecture of Elekes and Ruzsa on the size of the product set of a set \mathcal{A} whose sum set is of size $O(|\mathcal{A}|)$. Joint work with Max Wenqiang Xu.

