

GENERIC SCARRING FOR MINIMAL HYPERSURFACES IN MANIFOLDS THICK AT INFINITY WITH A THIN FOLIATION AT INFINITY Speaker: Xingzhe Li Cornell University

Time: Wed, Dec. 27th, 9:00-11:00 Venue: Room 102, SCMS

Abstract: We show generic scarring phenomenon for minimal hypersurfaces in a class of complete non-compact manifolds. In particular. prove that for metric \$g\$ we any in а C^{infty} -generic subset of the family of complete metrics which are thick at infinity with a thin foliation at infinity on a fixed M^{n+1} of dimension \$3 \leq (n + 1) \leq 7\$, to any connected, closed, embedded, \$2\$-sided, stable minimal hypersurface \$S \subset (M, g)\$, there exists a sequence of closed, embedded, minimal hypersurfaces $\lambda = \frac{k}{\delta}$ scarring along \$S\$, in the sense that the area of $\sigma \{k\}$ diverges to infinity, and when properly renormalized, $\delta = \{k\}$ converges to S as varifolds.