

Coloring Graphs with Forbidden Minors

Zixia Song University of Central Florida

Time: May 6th, 14:00 - 15:00

Zoom meeting ID: 861 3277 6675 Password: 121323

Link: https://zoom.com.cn/j/861 3277 6675

Venue: Room 102, Shanghai Center for Mathematical Sciences

Abstract:

Hadwiger's Conjecture from 1943 states that every graph with no K_t minor is (t-1)-colorable; it remains wide open for all $t \geq 7$. For positive integers t and s, let \mathcal{K}_t^{-s} denote the family of graphs obtained from K_t by removing s edges. We say that a graph G has no \mathcal{K}_t^{-s} minor if it has no H minor for every $H \in \mathcal{K}_t^{-s}$. Jakobsen in 1971 proved that every graph with no \mathcal{K}_7^{-2} minor is 6-colorable. In this talk, we present our results that every graph with no \mathcal{K}_8^{-4} minor is 7-colorable, and every graph with no \mathcal{K}_9^{-6} minor is 8-colorable. This is joint work with Michael Lafferty.

Email: scms@fudan.edu.cn