2020 AG Summer School

Zhiyuan Li

July 2020

References for Lecture I-III: Hartshorne "Algebraic Geometry" Chapter I and Chapter II; Vakil "Foundations of Algebraic Geometry" Part II and Part V

1 Projective Scheme

All the rings will be commutative.

1.1 A warm up for projective geometry

* Projective spaces as complex manifolds
$\mathbb{P}_{\mathbb{C}}^{n}:=\mathbb{C}^{n}-\{(0, \ldots, 0)\} / \sim$ has a complex manifold structure by associating a holomorphic local charts.

Definition 1.1.1 (projective complex manifold). A complex manifold M is said to be projective if there is a closed embedding $M \hookrightarrow \mathbb{P}_{\mathbb{C}}^{n}$ for some n.

Typical examples (from last week)

- The compact Riemman surfaces of genus g
- The Grassmannian $\operatorname{Gr}(r, n)$ can be embedded into $\mathbb{P}^{\binom{n}{k}-1}$ via the Plücker embedding.
- product, \mathbb{P}^{n}-bundle, polarized families over projective objects
* Projective spaces as schmems/varieties

We have seen from last week: $\mathbb{P}_{\mathbb{C}}^{n}$ can be viewed as a scheme obtained by gluing $n+1$ open subsets

$$
U_{i} \cong \mathbb{A}_{\mathbb{C}}^{n}=\operatorname{Spec}\left(\mathbb{C}\left[\frac{X_{0}}{X_{i}}, \ldots, \frac{X_{n}}{X_{i}}\right]\right)
$$

along the overlaps $U_{i j}=U_{i} \cap U_{j}$ via the transistion function $\frac{X_{j}}{X_{i}} \mapsto \frac{X_{i}}{X_{j}}$.
The projective schemes over \mathbb{C} are closed subschemes of $\mathbb{P}_{\mathbb{C}}^{n}$ under Zariski topology. The projective complex varieties are obtained by taking the closed
points of projective schemes. Such varieties can be viewed as the solution set of homogenous polynomial equations

$$
f_{1}\left(x_{0}, \ldots, x_{n}\right)=\ldots=f_{m}\left(x_{0}, \ldots, x_{n}\right)=0
$$

where f_{i} are homogenous.

- Chow's Theorem/GAGA by Serre: there is an equivalence \{projective complex manifolds $\} \Leftrightarrow\{$ Projective complex varieites $\}$

Goal of today: functorial algebraic constructions of projective objects

1.2 Proj constructions

The Spectrum functor defines an equivalence

$$
\begin{aligned}
\text { Spec : }\{\text { rings }\} & \longrightarrow\{\text { affine schemes }\} \\
R & \mapsto \text { Spec } R
\end{aligned}
$$

The projective schemes can be obtained via so called Proj functor.
Definition 1.2.1 (Proj construction for graded ring).
Let $S=\bigoplus_{d \geq 0} S_{d}$ be a graded ring and $S_{+}=\bigoplus_{d>0} S_{d}$ the irrelevant ideal. Then

$$
\text { Proj } S=\left\{\mathfrak{p} \in \operatorname{Spec} S \mid \mathfrak{p} \text { is homogenous, } S_{+} \not \subset \mathfrak{p}\right\}
$$

We endow it with the induced topology.

- $\forall f \in S$ homogenous of degree d, there is a standard open subset

$$
D_{+}(f)=\{\mathfrak{p} \in \operatorname{Proj} S \mid f \notin \mathfrak{p}\} \cong \operatorname{Spec} S_{(f)}
$$

where $S_{(f)}$ is the subring of S_{f} consisting of elements of the form r / f^{n} with $r \operatorname{homogeneous~and~} \operatorname{deg}(r)=n d$.

- The structure sheaf $\mathcal{O}_{\text {Proj } S}$ on Proj S is the unique sheaf of rings $\mathcal{O}_{\text {Proj } S}$ which agrees with $\mathcal{O}_{\text {Spec }\left(S_{(f)}\right.}$ on the standard open subset $D_{+}(f)$.

Example 1. 1. When $S=k\left[x_{0}, \ldots, x_{n}\right]=\bigoplus S_{d}$ with the usual grading, then Proj $S=\mathbb{P}_{k}^{n}$.
2. Write $T=k\left[y_{0}, \ldots, y_{m}\right]=\bigoplus T_{d}$. Then

$$
\operatorname{Proj}\left(\bigoplus_{d} S_{d} \otimes T_{d}\right)=\mathbb{P}_{k}^{n} \times \mathbb{P}_{k}^{m}
$$

FACT: Proj defines a functor

$$
\text { Proj : \{graded ring over A }\} \rightarrow \text { projective scheme over A }\}
$$

Some examples for morphisms between projective varieties.

Example 2.

(1) Veronese or d-uple embedding: $\varphi_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{\binom{n+d}{d}-1}$ sending $\left[x_{0}, \ldots, x_{n}\right]$ to $\left[x_{0}^{d}, x_{0}^{d-1} x_{1}, \ldots, x_{n}^{d}\right]$.
(2) Segre embedding: $\mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{n m+n+m}$ sending $\left(\left[x_{0}, \ldots, x_{n}\right],\left[y_{0}, \ldots, y_{m}\right]\right)$ to $\left[x_{0} y_{0}, \ldots, x_{n} y_{m}\right]$.

Note that (2) also implies that the product of projective varieties over k remains projective.

The construction of Proj of a graded sheaf gives rise to a projective morphism.
Definition 1.2.2 (Proj construction of graded sheaf).

- A graded quasicoherent sheaf \mathcal{F} of \mathcal{O}_{X}-modules means

$$
\mathcal{F}=\bigoplus_{d \geq 0} \mathcal{F}_{d}
$$

satisfying $\mathcal{F}_{d} \cdot \mathcal{F}_{d^{\prime}} \subseteq \mathcal{F}_{d+d^{\prime}}$ and $\mathcal{F}_{0}=\mathcal{O}_{X}$.

- We can define Proj \mathcal{F} by gluing the scheme $\operatorname{Proj} \mathcal{F}(U), U \subseteq X$.

Example 3. If \mathcal{E} is a locally free sheaf on X, then $\operatorname{Sym}^{\bullet} \mathcal{E}=\bigoplus \operatorname{Sym}^{d} \mathcal{E}$ is a graded \mathcal{O}_{X}-module. We obtain a projective bundle

$$
\mathbb{P}(\mathcal{E})=\operatorname{Proj}\left(\operatorname{Sym}^{\bullet} \mathcal{E}\right)
$$

over X.
Basic properties of a projective scheme.
(a) Let X be a projective variety over k. Then X is proper and $H^{0}\left(X, \mathcal{O}_{X}\right)=$ k.

The converse is almost true:
Chow's Lemma: Every proper variety is birational to a projective variety.
(b) (Twisted sheaf) Suppose $S=k\left[x_{0}, \ldots, x_{n}\right]$ is generated by S_{1}. The projective scheme Proj S carries a natural invertible sheaf $\mathcal{O}_{S}(1):=\widetilde{S}(1)$.
E.g. the projective space \mathbb{P}_{k}^{n} carries a natural invertible sheaf $\mathcal{O}_{\mathbb{P}_{k}^{n}}(1)$. Hence the projective subvariety $X \subseteq \mathbb{P}_{k}^{n}$ can be endowed with an invertible sheaf $\mathcal{O}_{X}(1)$ via restriction.

