

AN UPPER BOUND FOR POLYNOMIAL LOG-VOLUME GROWTH OF AUTOMORPHISMS OF ZERO ENTROPY

Speaker: Fei Hu University of Oslo

Time: Wed, Oct. 12, 16:00-17:00

Venue: Tencent Meeting 142 549 093, password: 312368

Abstract:

Let X be a normal projective variety of dimension d e 2 over an algebraically closed field and \$f\$ an automorphism of X. Suppose that the pullback $f^*|_{(mathsf{N}^1(X)_mathbf{R})}$ of \$f\$ on the space $\operatorname{Mathsf{N}^1(X)_bR}$ of numerical $\operatorname{Mathbf{R}}-divisor classes is unipotent$ and denote the index of the eigenvalue \$1\$ by <math>k+1. We prove an upper bound for polynomial log-volume growth $\operatorname{Mathrm{plov}(f)}$ of \$f\$, or equivalently, for the Gelfand--Kirillov dimension of the twisted homogeneous coordinate ring associated with (X,f), as follows: $[\operatorname{Mathrm{plov}(f)}$ |e (k/2 + 1)d| In characteristic zero, combining with the inequality k|e 2(d-1)| due to Dinh--Lin--Oguiso--Zhang, we obtain an optimal inequality that $[\operatorname{Mathrm{plov}(f) \ le d^2,]}$ which affirmatively answers questions of Cantat--Paris-Romaskevich and Lin--Oguiso--Zhang. This is joint work with Chen Jiang.