2 Geometry of projective varieties

Classical problem: find \sharp of polynomial equations. Geometrically, this is related to how varieties intersects.
The answer of this problem is to relate \sharp to some invariants of projective varieties.

2.1 Invariants of projective varieties

A motivating example is
Example 4 (Gauss' fundamental theorem of algebra). The polynomial equation $f(z)=0$ has $\operatorname{deg}(f)$ solutions (with multiplicity) in \mathbb{C}. Equivalently, the homogenous polynomial equation $f(x, y)=0$ has $\operatorname{deg}(f)$ solutions.

For three variables, the fundamental result is the following:
Theorem 2.1.1 (Bézout theorem for plane curves). Let f, g be two distinct irreducible homogenous polynomials in $k[x, y, z]$. The equations

$$
f(x, y, z)=g(x, y, z)=0
$$

have $\operatorname{deg}(f) \cdot \operatorname{deg}(g)$ solutions (with multiplicity).
In other words, the two plane curves $C_{1}=\{f(x, y, z)=0\}$ and $C_{2}=$ $\{g(x, y, z)=0\}$ in \mathbb{P}^{2} meet at $\operatorname{deg}(f) \operatorname{deg}(g)$ points.
Remark. The Bézout's theorem tells that any two closed curves in \mathbb{P}^{2} will have non-empty intersections. Note this fails for affine varieties, i.e. two affine lines in \mathbb{A}^{2} do not necessarily meet.

The higher dimensional generalization requires the concept of Hilbert polynomial.

* Hilbert polynomial of projective varieties

Definition 2.1.2. Let \mathcal{F} be a coherent sheaf on a projective scheme $X \subseteq \mathbb{P}^{n}$. By Hilbert-Serre, there eixsts a polynomial $P_{\mathcal{F}}(z) \in \mathbb{Q}[z]$ such that

$$
P_{\mathcal{F}}(d)=\chi(\mathcal{F}(d))=\sum_{i \geq 0}(-1)^{i} h^{i}(X, \mathcal{F}(d))
$$

for $d \gg 1$, where $\mathcal{F}(d)=\mathcal{F} \otimes \mathcal{O}_{X}(d) . P_{\mathcal{F}}(z)$ is the Hilbert polynomial of \mathcal{F} and $P_{X}:=P_{\mathcal{O}_{X}}$ is called the Hilbert polynomial of X in \mathbb{P}^{n}.

Facts for P_{X} (not very trivial)

1. $P_{X}(d)=h^{0}\left(X, \mathcal{O}_{X}(d)\right)$ for d sufficiently large due to the Serre vanishing theorem, i.e. $H^{i}(X, \mathcal{F}(d))=0$ for $i>0$ if \mathcal{F} is coherent and d sufficiently large.
2. First invariant: $\operatorname{deg}\left(P_{X}\right)=\operatorname{dim} X=m$.
3. Seconding invariant: leading coefficients of P_{X} is $\frac{\operatorname{deg}(X)}{m!}$.
4. Invariant from the constant term: the arithmetic genus of $X:(-1)^{m}\left(P_{X}(0)-\right.$ 1).

All these invariants are deformation invariant.
Example 5 (Invariants determines the geometry). 1. if $\operatorname{deg}(X)=1$, then X is a projective linear subspace in \mathbb{P}^{n}.
2. More generally, if X is non-degenerate in \mathbb{P}^{n}, then $\operatorname{dim} X+\operatorname{deg}(X) \geq n+1$.

* Bézout's theorem

With the knowledge of the degree, we can state Bézout's theorem in arbitrary dimensional projective space.

Theorem 2.1.3. Let X be a projective variety in \mathbb{P}_{k}^{n} with $\operatorname{dim} X \geq 1$ and H be a hypersurface not containing X. Denote by Z_{i} the irreducible components of the intersection of H and X. Then

$$
\operatorname{deg}(X) \cdot \operatorname{deg}(H)=\sum_{Z_{i}} \mu\left(X, H ; Z_{i}\right) \operatorname{deg}\left(Z_{i}\right)
$$

where $\mu\left(X, H ; Z_{i}\right)$ is the intersection multiplicity at Z_{i}.
The proof relies on computing the Hilbert polynomials via the short exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(-\operatorname{deg}(H)) \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X \cap H} \rightarrow 0
$$

Remark: if \mathfrak{p}_{i} is the prime ideal corresponds to Z_{i}, then $\mu\left(X, H ; Z_{i}\right)$ is the length of $\left(k\left[x_{0}, \ldots, x_{n}\right] /\left(I_{X}+I_{H}\right)\right)_{\mathfrak{p}_{i}}$ as a $k\left[x_{0}, \ldots, x_{n}\right]_{\mathfrak{p}_{i}}$-module.

Important consequences

- For projective variety X in \mathbb{P}^{n} of dimension d, the intersection number with d general hyperplanes

$$
H_{1} \cdot H_{2} \ldots \cdot H_{d} \cdot X
$$

is positive. As all hyperplanes are linearly equivalent, it is the same as $H^{d} \cdot X>0$.

- More generally, if we call the intersection $L:=X \cap H$ the hyperplane class on Y, then $L^{d} \cdot Y>0$ for any subvariety $Y \subseteq X$ of dimension d.

2.2 Generic intersection

Among the questions for intersection multiplicity, a natural one is when the intersection multipicity will be one.

Definition 2.2.1. Let X be a variety over k. A point $p \in X$ is $\operatorname{smooth} \operatorname{dim} X=$ $\operatorname{dim} T_{p} X$.

Theorem 2.2.2 (Bertini Theorem). Let $X \subseteq \mathbb{P}(V) \cong \mathbb{P}^{n}$ be a smooth subvariety of dimension greater than zero. Then for a generic hypersurface $H, Y=X \cap H$ is again smooth.

Proof. 1. Note that the set of hyperplanes is parametrized by the dual projective space $\mathbb{P}\left(V^{\vee}\right)$.
2. To say that a hyperplane is generic is equivalent to saying that there is a nonempty open subset $U \subseteq \mathbb{P}\left(V^{\vee}\right)$ consisting of points corresponding to that hyperplane and such that each hyperplane in U possesses the desired property.
3. $H \cap X$ will be smooth at x if $T_{x} X \not \subset T_{x} H$.
4. Consider the subset

$$
Z=\left\{(H, x) \mid x \in H, T_{x} X \subset T_{x} H\right\} \subseteq \mathbb{P}\left(V^{\vee}\right) \times X
$$

it is a closed subset.
5. The set of H in $\mathbb{P}\left(V^{\vee}\right)$ for which $H \cap X$ is singular is the image of Z via the projection $\mathbb{P}\left(V^{\vee}\right) \times X \rightarrow \mathbb{P}\left(V^{\vee}\right)$.
6. The assertion follows by an easy dimension count: $\operatorname{dim}(Z)=n-1$.

A more general statement is as follows:
Theorem 2.2.3. Suppose $\operatorname{char}(k)=0$. Then for any linear system $f: X \rightarrow$ \mathbb{P}_{k}^{n} and H a generic hyperplane, the pullback $f^{-1}(H)$ is smooth outside the base locus of f.

It fails in positive characteristic fields because the existence of purely inseparable map.

