Algebraic surfaces

Lecture IV: Rational surfaces

Arnaud Beauville

Université Côte d'Azur

July 2020

Linear systems and rational maps

$$L = \mathcal{O}_S(D) \in \text{Pic}(S)$$
. (Complete) linear system :
$$|L| = |D| := \{E \geqslant 0 \,|\, E \equiv D\} = \mathbb{P}(H^0(L)).$$

$$B_L =$$
Base locus of $L := \bigcap_{E \in |L|} E = Z \bigcup \{p_1, \dots, p_s\}$

$$Z = \bigcup C_i =$$
fixed part, p_i base points.

Rational map defined by L:

$$\varphi_L: S \setminus B_L \to |L|^{\vee}, \ \varphi_L(p) = \{E \mid p \in E\} = \text{hyperplane in } |L|.$$

If Z= fixed part of |L|, $\varphi_L=\varphi_{L(-Z)}$: can assume L has no fixed part, i.e. B_L finite.

$$E \in |L| \iff \text{hyperplane } H_E \subset |L|^{\vee};$$

$$\varphi_L^* H_E = \{ p \in S \setminus B_L \mid E \in \varphi_L(p) \Leftrightarrow p \in E \} = E \setminus B_L : \varphi_L^* H_E = E.$$

Properties of φ_L

Properties of φ_L

- φ_L morphism $\Leftrightarrow |L|$ base point free (i.e. $B_L = \varnothing$).
- φ_L injective $\Leftrightarrow \forall p \neq q, \exists E \in |L|, p \in E, q \notin E$.
- φ_L embedding $\Leftrightarrow \forall p, v \neq 0 \in T_p(S), \exists p \in E \in |L|, v \notin T_p(E).$ If this is the case, we say that L is **very ample**.
- φ_L embedding \Rightarrow $\deg(\varphi_L(S)) = L^2$.

Remark : If D is very ample and |E| is base point free, D + E is very ample.

Examples : • Let H be a line in \mathbb{P}^2 . The linear system |nH| of curves of degree n ($n \ge 1$) is very ample. In particular, φ_{2H} is an isomorphism of \mathbb{P}^2 onto a surface $V \subset \mathbb{P}^5$, the **Veronese surface**.

Examples

- On $\mathbb{P}^1 \times \mathbb{P}^1$, let $A = \mathbb{P}^1 \times \{0\}$ and $B = \{0\} \times \mathbb{P}^1$. The linear systems |A| and |B| are base point free, and φ_{A+B} is the Segre embedding in \mathbb{P}^3 . Hence aA + bB is very ample for $a, b \geqslant 1$. In particular, |2A + B| gives an isomorphism onto a surface of degree 4 in \mathbb{P}^5 ("quartic scroll"). Since $A \cdot (2A + B) = 1$, the curves in |A| are mapped to lines in \mathbb{P}^5 .
- Let $p_1, \ldots, p_s \in S$. Let |D| be a linear system on S, and $P \subset |D|$ the subspace of divisors passing through p_1, \ldots, p_s . Assume that at each p_i the curves of P have different tangent directions. Let $b: \hat{S} \to S$ be the blowing up of p_1, \ldots, p_s , E_i the exceptional curve above p_i . The system $\hat{D} := b^*D \sum E_i$ is base point free and defines a morphism $\varphi_{\hat{D}}: \hat{S} \to |\hat{D}|^{\vee}$ to which we can apply the previous remarks.

Examples (continued)

- Let $p \in \mathbb{P}^2$; consider the system of conics passing through p. It is easy to check that the system $2b^*H E$ on $\hat{\mathbb{P}}_p^2$ is very ample. It gives an isomorphism onto a surface $S \subset \mathbb{P}^4$. We have $\deg(S) = (4H^2 + E^2) = 3$. The strict transforms of the lines through p in \mathbb{P}^2 form the linear system $b^*H E$; since $(b^*H E) \cdot (2b^*H E) = 1$, they are mapped to lines in \mathbb{P}^4 . S is the **cubic scroll**.
- Now let us pass to linear systems of cubic curves.

Proposition

For $s \le 6$, let $p_1, \ldots, p_s \in S = \mathbb{P}^2$, such that no 3 of them lie on a line and no 6 on a conic. The linear system |-K| on \hat{S} is very ample, and defines an isomorphism of \hat{S} onto a surface Σ_d of degree d := 9 - s in \mathbb{P}^d , called a **del Pezzo surface**.

Sketch of proof

Sketch of proof : The proof is a long exercise, with no essential difficulty; I will just give an idea. We have $-K_{\hat{S}} = 3b^*H - \sum E_i$, corresponding to the system P of cubics passing through the p_i . Let us show that φ_{-K} is injective in the most difficult case s=6.

- Let $p \neq q \in \mathbb{P}^2 \setminus \{p_i\}$. Can assume p_1 is not on the line $\langle p, q \rangle$.
- \exists ! conic Q_{ij} passing through p and the p_k for $k \neq i, j$.
- $Q_{1i} \cap Q_{1j} = \{p\} \cup 3 \text{ other } p_k \Rightarrow q \in \text{at most one } Q_{1i}, \text{ say } Q_{12}.$
- q is at most on one $\langle p_1, p_i \rangle$, say $\langle p_1, p_3 \rangle$.
- Then $Q_{14} \cup \langle p_1, p_4 \rangle \in P$, $\ni p$, $\not\ni q \Rightarrow \varphi_{-K}(p) \neq \varphi_{-K}(q)$.
- Then: $\deg(\Sigma_d)=(3b^*H-\sum E_i)^2=9-s=d$; one has $h^0(3H)=10$, and one checks that p_1,\ldots,p_s impose s independent conditions.

Example : Σ_3 is a smooth cubic surface in \mathbb{P}^3 ; we will see that one obtains all smooth cubic surfaces in that way.

Lines on del Pezzo surfaces

Proposition

lines $\subset \Sigma_d$ = exceptional curves = the E_i , the strict transforms of the lines $\langle p_i, p_j \rangle$ and of the conics passing through 5 of the p_i (for s = 5 or 6). Their number is $s + {s \choose 2} + {s \choose 5}$.

Proof: $E \subset \hat{S} \iff \text{line in } \Sigma \Leftrightarrow K_{\hat{S}} \cdot E = -1, \text{ i.e. } E \text{ exceptional.}$ $E \neq E_i \Rightarrow E \equiv mb^*H - \sum a_iE_i \text{ in } \operatorname{Pic}(\hat{S}); \ a_i = E \cdot E_i = 0 \text{ or } 1.$ $(-K) \cdot E = 3m - \sum a_i = 1 \Rightarrow \sum a_i = 2 \text{ and } m = 1, \text{ or } \sum a_i = 5 \text{ and } m = 2.$

Remark : We know more than the number of lines, namely their classes in $Pic(\Sigma_d)$, their incidence properties, etc. The configuration of lines has been intensively studied in the 19th and 20th century. Let us just mention that the lattice $K^{\perp} \subset Pic(\Sigma_d)$ is a *root system*, of type E_6 , D_5 , A_4 , $A_2 \times A_1$ for s = 6, 5, 4, 3.

The cubic surface

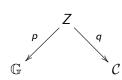
Proposition

Any smooth cubic surface $S \subset \mathbb{P}^3$ is a del Pezzo surface Σ_3 . In particular, S contains 27 lines.

Strategy of the proof: show that S contains a line, then 2 skew lines; then deduce from that a map $S \to \mathbb{P}^2$ composite of blowups.

$$\mathcal{C}:=|\mathcal{O}_{\mathbb{P}^3}(3)|=\{\text{cubic surfaces}\subset\mathbb{P}^3\}\cong\mathbb{P}^c\ (c=19).$$

Incidence correspondence: $Z \subset \mathbb{G} \times \mathcal{C} = \{(\ell, S) | \ell \subset S\}.$



Fibers of
$$p \cong \mathbb{P}^{c-4}$$
 ($S : F = 0$ contains

$$Z = T = 0 \Leftrightarrow F \text{ has no } X^3, X^2Y, XY^2, Y^3$$
).

Thus dim $Z = \dim C$. We want q surjective.

Cubic surface (continued)

If $q:Z\to \mathcal{C}$ not surjective, $\dim q(Z)\leqslant c-1 \Rightarrow \dim q^{-1}(S)\geqslant 1$ for $S\in q(Z)$. But $q^{-1}(\Sigma_3)$ finite \Rightarrow impossible.

② $S \supset \ell$. The planes $\Pi \supset \ell$ cut S along a conic.

Claim: 5 of these conics are degenerate, i.e. of the form $\ell_1 \cup \ell_2$.

Proof :
$$\ell$$
 : $Z = T = 0 \Rightarrow$

$$F = AX^2 + 2BXY + CY^2 + 2DX + 2EY + G$$
, with $A, ..., G$

homogeneous polynomials in Z, T. The conic is degenerate

$$\Leftrightarrow \det \begin{vmatrix} A & B & D \\ B & C & E \\ D & E & G \end{vmatrix} = 0, \text{ degree 5 in } Z, T. \geqslant 2 \text{ distinct roots} \Rightarrow$$

$$S\supset 2$$
 triangles: $\ell\cup\ell_1\cup\ell_1'$, $\ell\cup\ell_2\cup\ell_2'$. Then $\ell_1\cap\ell_2=\varnothing$.

Cubic surface (continued)

③ $\ell \subset S$, given by X = Y = 0. Projection from $\ell: S \xrightarrow{(X,Y)} \mathbb{P}^1$.

Well-defined: S: XB - YA = 0, (X, Y) = (A, B) on S,

 $X = Y = A = B = 0 \implies S$ singular.

 $\varphi_i:S\to\mathbb{P}^1 \text{ projection from } \ell_i \iff \varphi=(\varphi_1,\varphi_2):S\to\mathbb{P}^1\times\mathbb{P}^1.$

Geometrically, $\varphi_i(p) = \text{plane } \langle \ell_i, p \rangle \text{ through } \ell_i$.

Birational: for $(\pi_1, \pi_2) \in \mathbb{P}^1 \times \mathbb{P}^1$, $\pi_1 \cap \pi_2 = \text{line meeting } \ell_1$ and ℓ_2 , intersects S along a unique third point p.

Thus $\varphi=$ composition of blowups. Since blowup of $\mathbb{P}^1\times\mathbb{P}^1$ at 1 point = blowup of \mathbb{P}^2 at 2 points, get $\varphi':S\to\mathbb{P}^2$ composition of blowups.