Relaxations of coloring squares of graphs

Choi，Ilkyoo
 Hankuk University of Foreign Studies

Time：October 7th，10：00－11：00
Zoom meeting ID： 83654986545 Password： 121323
Link：https：／／zoom．us／j／83654986545

Abstract：

Less than a year ago，the following two notions of relaxations of coloring squares of graphs were formally introduced by Petruševski and Škrekovski，and by Fabrici，Lužar，Rindošová，and Soták：an odd c－coloring（resp．proper conflict－free c－coloring）of a graph is a proper c－coloring such that each non－isolated vertex has a color appearing an odd number of times（resp．exactly once）on its neighborhood．

We will survey some results around these parameters and our contributions．In particular，we show that for $c \geq 5$ ，every graph G with $\operatorname{mad}(G) \leq \frac{4 c}{c+2}$ has a proper conflict－free c－coloring，unless G contains a 1 －subdivision of the complete graph on $c+1$ vertices． We also provide results when $c=4$ and for planar graphs with girth restrictions．Our results completely resolve Cranston＇s conjecture in a much stronger form，and also improves upon results of Caro， Petruševski，and Škrekovski．This is joint work with Eun－Kyung Cho， Hyemin Kwon，and Boram Park．

