deviations of triangle counts in the binomial RANDOM GRAPH II

Online Seminar

Speaker：Wojciech Samotij Tel Aviv University

Time：Thur，June．18th，15：00－16：00
Zoom meeting ID： 93815617744
Password： 061801
Link：https：／／zoom．com．cn／j／93815617744

Abstract：Suppose that Y＿1，．．．，Y＿N are i．i．d．（independent identically distributed）random variables and let $\mathrm{X}=\mathrm{Y} _1+\ldots+$ Y＿N．The classical theory of large deviations allows one to accurately estimate the probability of the tail events $\mathrm{X}<(1-\mathrm{c}) \mathrm{E}[\mathrm{X}]$ and $\mathrm{X}>(1+\mathrm{c}) \mathrm{E}[\mathrm{X}]$ for any positive c ．However，the methods involved strongly rely on the fact that X is a linear function of the independent variables Y＿1，．．．，Y＿N．There has been considerable interest－both theoretical and practical－in developing tools for estimating such tail probabilities also when X is a nonlinear function of the Y＿i．One archetypal example studied by both the combinatorics and the probability communities is when X is the number of triangles in the binomial random graph $G(n, p)$ ．
Talk 2：We will present a complete solution to the upper tail problem for triangle counts in $G(n, p)$ that was obtained recently in a joint work with Matan Harel and Frank Mousset．

