COMMUTATIVE ALGEBRA NOTES

CHEN JIANG

Contents

1. Introduction 1
1.1. Nakayama's lemma 1
1.2. Noetherian rings 2
1.3. Associated primes 3
1.4. Tensor products and Tor 3
2. Koszul complexes and regular sequences 6
2.1. Regular sequences 6
2.2. Koszul complexes 6
2.3. Koszul complexes versus regular sequences 8
2.4. Operations on Koszul complexes 9
2.5. Proof of the main theorems 11
3. Dimensions and depths 12
3.1. Dimension theory 13
3.2. Hilbert fuctions/polynomials 13
3.3. Regular local rings 14
3.4. Depth versus codimension, Cohen-Macaulay rings 15
References 16

1. Introduction

In this lecture, we consider a (Noetherian) commutative ring R with identity element.

I will assume that students know about basic definitions and properties of rings, ideals, modules, morphisms (e.g. Chapter 1-3 of [1]). Our main textbook is [2]. We will cover selected topics in order to serve the lecture of geometry of syzygies ([2, Section 17-19]).
1.1. Nakayama's lemma. The Jacobson radical $J(R)$ of R is the intersection of all maximal ideals. Note that $y \in J(R)$ iff $1-x y$ is a unit in R for every $x \in R$.

Theorem 1.1 (Nakayama's lemma). Let I be an ideal contained in the Jacobson radical of R, and M a finitely generated R-module. If $I M=M$, then $M=0$.

Lemma 1.2. Let I be an R-ideal and M a finitely generated R-module. If $I M=M$, then there exists $y \in I$ such that $(1-y) M=0$.

Proof. This is a consequence of the Caylay-Hamilton theorem. Consider m_{1}, \ldots, m_{n} a set of generators in M, then there exists an $n \times n$ matrix A with coefficients in I such that $\left(m_{1}, \ldots, m_{n}\right)^{T}=A\left(m_{1}, \ldots, m_{n}\right)^{T}$. Set $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)^{T}$. Hence $\left(I_{n}-A\right) \mathbf{m}=0$. Note that $\operatorname{adj}\left(I_{n}-A\right)\left(I_{n}-A\right)=$ $\operatorname{det}\left(I_{n}-A\right) I_{n}$, we know that $\operatorname{det}\left(I_{n}-A\right) \mathbf{m}=0$, that is, $\operatorname{det}\left(I_{n}-A\right) m_{i}=0$ for all i. This implies that $\operatorname{det}\left(I_{n}-A\right) M=0$.

Example 1.3. If we do not assume that M is finitely generated, this is not true. For example, consider $R=k[[x]], M=k\left[\left[x, x^{-1}\right]\right]$.

Corollary 1.4. Let I be an ideal contained in the Jacobson radical of R, and M a finitely generated R-module. If $N+I M=M$ for some submodule $N \subset M$, then $M=N$.

Proof. Apply Nakayama's lemma to M / N.
Corollary 1.5. Let (R, \mathfrak{m}) be a local ring and M a finitely generated R module. Consider $m_{1}, \ldots, m_{n} \in M$. If $\bar{m}_{1}, \ldots, \bar{m}_{n} \in M / \mathfrak{m} M$ is a basis (as a R / \mathfrak{m}-vector space), then m_{1}, \ldots, m_{n} generates M (which is also a minimal set of generators.)

Proof. Apply Corollary 1.4 to N the submodule generated by m_{1}, \ldots, m_{n}.

1.2. Noetherian rings.

Definition 1.6 (Noetherian ring). A ring R is Noetherian if one of the following equivalent conditions holds:
(1) Every non-empty set of ideals has a maximal element;
(2) The set of ideals satisfies the ascending chain condition (ACC);
(3) Every ideal is finitely generated.

In this lecture, we assume all rings are Noetherian and all modules are finitely generated for simplicity.

Theorem 1.7 (Hilbert basis theorem). If R is Noetherian, then $R[x]$ is Noetherian.

Idea of proof. Consider $I \subset R[x]$ an ideal. Consider $J \subset R$ the leading coefficients of I, then J is finitely generated. We may assume that J is generated by the leading coefficients of $f_{1}, \ldots, f_{n} \in R[x]$. Take I^{\prime} be the ideal generated by f_{1}, \ldots, f_{n}, then it is easy to see that any $f \in I$ can be written as $f=f^{\prime}+g$ with $f^{\prime} \in I^{\prime}$ and $\operatorname{deg} g<\max _{i}\left\{\operatorname{deg} f_{i}\right\}=r$. So

$$
I=I \cap\left(R \oplus R x \oplus \cdots \oplus R x^{r-1}\right)+I^{\prime}
$$

is finitely generated. (Check that $I \cap\left(R \oplus R x \oplus \cdots \oplus R x^{r-1}\right)$ is finitely generated!)

Example 1.8. Any quotient of polynomial ring $k\left[x_{1}, \ldots, x_{n}\right] / I$ is Noetherian.
1.3. Associated primes. We will use the notion $(A: B)$ to define the set $\{a \mid a B \subset A\}$ whenever it makes sense. For example, if $N, N^{\prime} \subset M$ are R-modules and I an ideal, then we can define ($N: I$) as a submodule of M, and $\left(N^{\prime}: N\right)$ an ideal. Usually the set $(0: N)$ is denoted by $\operatorname{ann}(N)$ and called the annihilator of N, that is, the set of elements whose multiplication action kills N.

Definition 1.9 (Associated prime). A prime P of R is associated to M if $P=\operatorname{ann}(x)$ for some $x \in M$.

Associated primes are important in the primary decomposition. But here we mainly focus on its relation with zero-divisors.
Theorem 1.10. Let R be a Noetherian ring and M a finitely generated R-module. Then the union of associated primes to M consists of zero and zero-divisors. Moreover, there are only finitely many associated primes.
Proof. We want to show that

$$
\bigcup_{\operatorname{ann}(x): \text { :prime }} \operatorname{ann}(x)=\bigcup_{x \neq 0} \operatorname{ann}(x) .
$$

So it suffices to show that if ann (y) is maximal among all ann (x), then $\operatorname{ann}(y)$ is prime. Consider $r s \in \operatorname{ann}(y)$ such that $s \notin \operatorname{ann}(y)$, then $r s y=0$ but $s y \neq 0$. We know that $\operatorname{ann}(y) \subset \operatorname{ann}(s y)$, so equality holds by maximality. This implies that $r \in \operatorname{ann}(y)$.

To prove the finiteness, we only outline the idea here. Denote $\operatorname{Ass}(M)$ the set of associated primes. Then it is not hard to see that for a short exact sequence

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0,
$$

we have

$$
\operatorname{Ass}\left(M^{\prime}\right) \subset \operatorname{Ass}(M) \subset \operatorname{Ass}\left(M^{\prime}\right) \cup \operatorname{Ass}\left(M^{\prime \prime}\right)
$$

So inductively we get the finiteness.
Remark 1.11. Another fact is that if P is a prime minimal among all primes containing $\operatorname{ann}(M)$, then P is an associated prime.
Corollary 1.12. Let R be a Noetherian ring and M a finitely generated R-module. Let I be an ideal. Then either I contains a non zero-divisor on M, or I annihilated a non-zero element of M.

Proof. Suppose that I contains only zero-divisors on M, then by Theorem 1.10, $I \subset \bigcup_{\operatorname{ann}(x) \text { :prime }} \operatorname{ann}(x)$. So the conclusion follows from the following easy lemma.
Lemma 1.13. Let I be an ideal and let P_{1}, \ldots, P_{n} be primes of R. If $I \subset \bigcup_{i} P_{i}$, then $I \subset P_{i}$ for some i.
1.4. Tensor products and Tor. Let M, N be R-modules, the tensor product $M \otimes N$ is defined by the module generated by

$$
\{m \otimes n \mid m \in M, n \in N\}
$$

modulo relations

$$
\left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n ;
$$

$$
\begin{aligned}
& m \otimes\left(n+n^{\prime}\right)=m \otimes n+m \otimes n^{\prime} \\
& (r m) \otimes n=m \otimes(r n)=r(m \otimes n)
\end{aligned}
$$

for $m \in M, n \in N, r \in R$. It can be characterized by the universal property that if $f: M \times N \rightarrow P$ is an R-bilinear map, then there exists a unique $g: M \otimes N \rightarrow P$ such that f factors through g.

Example 1.14. (1) $M \otimes R \simeq M, M \otimes R^{n} \simeq M^{n}$;
(2) $M \otimes R / I \simeq M / I M$;
(3) $\left(M \otimes_{R} N\right)_{P} \simeq M_{P} \otimes_{R_{P}} N_{P}$.

Proposition 1.15. $(-\otimes N)$ is a right-exact functor. If

$$
M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \rightarrow 0
$$

is a exact sequence of R-modules, then

$$
M^{\prime} \otimes N \xrightarrow{f \otimes 1} M \otimes N \xrightarrow{g \otimes 1} M^{\prime \prime} \otimes N \rightarrow 0
$$

is exact.
Definition 1.16 (Flat module). N is flat if $(-\otimes N)$ is an exact functor, that is, if

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

is a exact sequence of R-modules, then

$$
0 \rightarrow M^{\prime} \otimes N \rightarrow M \otimes N \rightarrow M^{\prime \prime} \otimes N \rightarrow 0
$$

is exact.
To study flatness, we need to introduce Tor from homological algebra.
Definition 1.17 (Projective module). An R-module M is projective if for any surjective map $f: N_{1} \rightarrow N_{2}$ and any map $g: M \rightarrow N_{2}$, there exists $h: M \rightarrow N_{1}$ such that $f \circ h=g$.

Example 1.18. Free modules are flat and projective.
Definition 1.19 (Complexes and homologies). A complex of R-modules is a sequence of R-modules with (differential) homomorphisms

$$
\mathcal{F}: \cdots \rightarrow F_{i+1} \xrightarrow{\delta_{i+1}} F_{i} \xrightarrow{\delta_{i}} F_{i-1} \rightarrow \ldots
$$

such that $\delta_{i} \delta_{i+1}=0$ for each i. Denote the homology to be $H_{i}(\mathcal{F})=$ $\operatorname{ker}\left(\delta_{i}\right) / \operatorname{im}\left(\delta_{i+1}\right)$. We say that \mathcal{F} is exact at degree i if $H_{i}(\mathcal{F})=0$. A morphism of complexes $\phi: \mathcal{F} \rightarrow \mathcal{G}$ is given by $\phi_{i}: F_{i} \rightarrow G_{i}$ commuting with differentials, that is, we have a commutative diagram

This naturally gives morphisms between homologies $\phi_{i}: H_{i}(\mathcal{F}) \rightarrow H_{i}(\mathcal{G})$.

Definition 1.20 (Projective resolution). A projective resolution of an R module M is a complex of projective modules

$$
\mathcal{F}: \cdots \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \xrightarrow{\phi_{1}} F_{0}
$$

which is exact and $\operatorname{coker}\left(\phi_{1}\right)=M$. Sometimes we also denote it by

$$
\mathcal{F}: \cdots \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \xrightarrow{\phi_{1}} F_{0}(\rightarrow M \rightarrow 0)
$$

Definition 1.21 (Left derived functor). Let T be a right-exact functor. Given a projective resolution of an R-module M :

$$
\mathcal{F}: \cdots \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \xrightarrow{\phi_{1}} F_{0}(\rightarrow M \rightarrow 0) .
$$

Define the left derived functor by $L_{i} T(M):=H_{i}(T \mathcal{F})$, which is just the homology of

$$
T \mathcal{F}: \cdots \rightarrow T\left(F_{n}\right) \rightarrow \cdots \rightarrow T\left(F_{1}\right) \rightarrow T\left(F_{0}\right)(\rightarrow T(M) \rightarrow 0)
$$

We collect basic properties of derived functors here.
Proposition 1.22. (1) $L_{0} T(M)=T(M)$;
(2) $L_{i} T(M)$ is independent of the choice of projective resolution;
(3) If M is projective, then $L_{i} T(M)=0$ for $i>0$.
(4) For a short exact sequence of R-modules

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

we have a long exact sequence

$$
\begin{aligned}
& \rightarrow L_{3} T(A) \rightarrow L_{3} T(B) \rightarrow L_{3} T(C) \\
& \rightarrow L_{2} T(A) \rightarrow L_{2} T(B) \rightarrow L_{2} T(C) \\
& \rightarrow L_{1} T(A) \rightarrow L_{1} T(B) \rightarrow L_{1} T(C) \\
& \rightarrow T(A) \rightarrow T(B) \rightarrow T(C) \rightarrow 0
\end{aligned}
$$

Definition 1.23 (Tor). For an R-module $N, \operatorname{Tor}_{i}^{R}(-, N)$ is defined by $L_{i} T(-)$ where $T=(-\otimes N)$.

Remark 1.24. So to compute $\operatorname{Tor}_{i}^{R}(M, N)$, we should pick a projective resolution \mathcal{F} of M and compute $H_{i}(\mathcal{F} \otimes N)$. Note that tensor products are symmetric, that is, $M \otimes N \simeq N \otimes M$, it can be seen that $\operatorname{Tor}_{i}^{R}(M, N) \simeq$ $\operatorname{Tor}_{i}^{R}(N, M)$, and $\operatorname{Tor}_{i}^{R}(M, N)$ can be also computed by pick a projective resolution \mathcal{G} of N and compute $H_{i}(M \otimes \mathcal{G})$.

Theorem 1.25. TFAE:
(1) N is flat;
(2) $\operatorname{Tor}_{i}^{R}(M, N)=0$ for all $i>0$ and all M;
(3) $\operatorname{Tor}_{1}^{R}(M, N)=0$ for all M.

Proof. (1) $\Longrightarrow(2)$: take a projective resolution \mathcal{F} of M, we need to compute $H_{i}(\mathcal{F} \otimes N)$. As N is flat, $\mathcal{F} \otimes N$ is exact, hence $\operatorname{Tor}_{i}^{R}(M, N)=0$ for all $i>0$.
$(2) \Longrightarrow(3):$ trivial.
$(3) \Longrightarrow(1)$: this follows from the long exact sequence

$$
\operatorname{Tor}_{1}^{R}\left(M^{\prime \prime}, N\right) \rightarrow M^{\prime} \otimes N \rightarrow M \otimes N \rightarrow M^{\prime \prime} \otimes N \rightarrow 0
$$

2. Koszul complexes and Regular sequences

2.1. Regular sequences.

Definition 2.1 (Regular sequence). Let R be a ring and M an R-module. A sequence of elements $x_{1}, \ldots, x_{n} \in R$ is called a regular sequence on M (or M-sequence) if
(1) $\left(x_{1}, \ldots, x_{n}\right) M \neq M$;
(2) For each $1 \leq i \leq n, x_{i}$ is not a zero-divisor on $M /\left(x_{1}, \ldots, x_{i-1}\right) M$.

Definition 2.2 (Depth). Let R be a ring, I an ideal, and M an R-module. Suppose $I M \neq M$. The depth of I on M, $\operatorname{depth}(I, M)$, is defined by the maximal length of M-sequences in I.

Remark 2.3. (1) If $M=R$, then simply denote depth $I:=\operatorname{depth}(I, M)$.
(2) We will see soon (Theorem 2.15) that any maximal M-sequence has the same length.

Example 2.4. If $R=k\left[x_{1}, \ldots, x_{n}\right]$, then x_{1}, \ldots, x_{n} is a regular sequence. We will see soon that $\operatorname{depth}\left(x_{1}, \ldots, x_{n}\right)=n$.

Remark 2.5. The depth measures the size of an ideal, and an element in the regular sequence corresponds to a hypersurface in geometry. So a regular sequence in I corresponds to a set of hypersurface containing $V(I)$ intersecting each other "properly". Consider for example $R=k[x, y]$ or $k[x, y] /(x y)$, $I=(x, y)$.

2.2. Koszul complexes.

Definition 2.6 (Complexes and homologies). A complex of R-modules is a sequence of R-modules with homomorphisms

$$
\mathcal{F}: \cdots \rightarrow M_{i-1} \xrightarrow{\delta_{i-1}} M_{i} \xrightarrow{\delta_{i}} M_{i+1} \rightarrow \ldots
$$

such that $\delta_{i} \delta_{i-1}=0$ for each i. Denote the (co)homology to be $H^{i}(\mathcal{F})=$ $\operatorname{ker}\left(\delta_{i}\right) / \operatorname{im}\left(\delta_{i-1}\right)$.

We will introduce Koszul complexes and explain how regular sequences are related to Koszul complexes.

Example 2.7 (Koszul complex of length 1). Given $x \in R$. The Koszul complex of length 1 is given by

$$
K(x): 0 \rightarrow R \xrightarrow{x} R \rightarrow 0 .
$$

Note that $H^{0}(K(x))=(0: x), H^{1}(K(x))=R / x R$. Then x is an R-sequence if $(1) H^{1}(K(x)) \neq 0 ;(2) H^{0}(K(x))=0$.

Example 2.8 (Koszul complex of length 2). Given $x, y \in R$. The Koszul complex of length 2 is given by

$$
K(x, y): 0 \rightarrow R \xrightarrow{\binom{y}{x}} R^{\oplus 2} \xrightarrow{\left(\begin{array}{ll}
-x & y
\end{array}\right)} R \rightarrow 0
$$

Note that $H^{0}(K(x, y))=(0:(x, y))$. $H^{2}(K(x, y))=R /(x, y) R$. We can compute $H^{1}(K(x, y))$ (Exercise). It turns out that if x is not a zero-divisor in R, then $H^{1}(K(x, y)) \simeq(x: y) /(x)$. So $H^{1}(K(x, y))=0$ if and only if y is not a zero-divisor of $R /(x)$. In conclusion, x, y is an R-sequence if (1) $H^{2}(K(x, y)) \neq 0 ;(2) H^{0}(K(x, y))=H^{1}(K(x, y))=0$.

Theorem 2.9. Let (R, \mathfrak{m}) be a local ring and $x, y \in \mathfrak{m}$. Then x, y is a regular sequence iff $H^{1}(K(x, y))=0$. In particular, x, y is a regular sequence iff y, x is a regular sequence.

Proof. This is not a direct consequence of the above argument, as we need to show that x is a non-zero-divisor (equivalent to $H^{0}(K(x))=0$). Write $K(x, y)$ as the following:

Then this gives a short exact sequence of complexes

That is,

$$
0 \rightarrow K(x)[-1] \rightarrow K(x, y) \rightarrow K(x) \rightarrow 0
$$

Then this induces a long exact sequences of homologies

$$
H^{0}(K(x)) \xrightarrow{y} H^{0}(K(x)) \rightarrow H^{1}(K(x, y)) \rightarrow H^{1}(K(x)) .
$$

So $H^{1}(K(x, y))=0$ implies that $y H^{0}(K(x))=H^{0}(K(x))$, which means that $H^{0}(K(x))=0$ by Nakayama's lemma.

Corollary 2.10. Let (R, \mathfrak{m}) be a local ring and $x_{1}, \ldots, x_{n} \in \mathfrak{m}$. Suppose that x_{1}, \ldots, x_{n} is a regular sequence, then any permutation of x_{1}, \ldots, x_{n} is again a regular sequence. (Exercise.)

We will define Koszul complexes and show this correspondence in general.
Definition 2.11 (Exterior algebra). Let N be an R-module. Denote the tensor algebra

$$
T(N)=R \oplus N \oplus(N \otimes N) \oplus \ldots
$$

The exterior algebra $\bigwedge N=\oplus_{m} \bigwedge^{m} N$ is defined by $T(N)$ modulo the relations $x \otimes x$ (and hence $x \otimes y+y \otimes x$) for $x, y \in N$. The product of $a, b \in \Lambda N$ is written as $a \wedge b$.

Definition 2.12 (Koszul complex). Let N be an R-module, $x \in N$. Define the Koszul complex to be

$$
K(x): 0 \rightarrow R \rightarrow N \rightarrow \bigwedge^{2} N \rightarrow \cdots \rightarrow \bigwedge^{i} N \xrightarrow{d_{x}} \bigwedge^{i+1} N \rightarrow \ldots
$$

where d_{x} sends a to $x \wedge a$. If $N \simeq R^{n}$ is a free module of rank n (we always consider this situation) and $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$, then we denote $K(x)$ by $K\left(x_{1}, \ldots, x_{n}\right)$.
Remark 2.13. (1) The $R \rightarrow N$ maps 1 to x.
(2) Consider $N=R^{2}$ (with basis $\left.e_{1}, e_{2}\right)$ and $x=\left(x_{1}, x_{2}\right)$, then $\bigwedge^{2} N \simeq R$ (with bases $e_{1} \wedge e_{2}$), and the map $N \rightarrow \bigwedge^{2} N$ is given by $e_{1} \mapsto$ $\left(x_{1} e_{1}+x_{2} e_{2}\right) \wedge e_{1}=-x_{2} e_{1} \wedge e_{2}$ and $e_{2} \mapsto x_{1} e_{1} \wedge e_{2}$. In other words,

$$
K\left(x_{1}, x_{2}\right): 0 \rightarrow R \xrightarrow{\binom{x_{1}}{x_{2}}} R^{\oplus 2} \xrightarrow{\left(\begin{array}{ll}
-x_{2} & x_{1}
\end{array}\right)} R \rightarrow 0 .
$$

Example 2.14. $H^{n}\left(K\left(x_{1}, \ldots, x_{n}\right)\right)=R /\left(x_{1}, \ldots, x_{n}\right)$. Consider the corresponding complex

$$
\bigwedge^{n-1} N \xrightarrow{d_{x}} \bigwedge^{n} N \rightarrow \bigwedge^{n+1} N=0
$$

Denote e_{1}, \ldots, e_{n} to be a basis of $N \simeq R^{n}$, then the basis of $\bigwedge^{n} N$ is just $e_{1} \wedge \cdots \wedge e_{n}$, and the basis of $\wedge^{n-1} N$ is $e_{1} \wedge \cdots \wedge \hat{e}_{i} \wedge \cdots \wedge e_{n}(1 \leq i \leq n) . d_{x}$ $\operatorname{maps} e_{1} \wedge \cdots \wedge \hat{e}_{i} \wedge \cdots \wedge e_{n}$ to $(-1)^{i-1} x_{i} e_{1} \wedge \cdots \wedge e_{n}$. So imd $d_{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $H^{n}\left(K\left(x_{1}, \ldots, x_{n}\right)\right)=R /\left(x_{1}, \ldots, x_{n}\right)$.
2.3. Koszul complexes versus regular sequences. Now we can state the main theorem of this section.

Theorem 2.15. Let M be a finitely generated R-module. If

$$
H^{j}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right)=0
$$

for $j<r$ and $H^{r}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right) \neq 0$, then every maximal M-sequence in $I=\left(x_{1}, \ldots, x_{n}\right) \subset R$ has length r.

Idea of proof. Firstly, we consider the case that x_{1}, \ldots, x_{s} is a maximal M sequence. In this case it is natural to prove this case by induction on n and s.

In order to reduce the general case to this case, we consider y_{1}, \ldots, y_{s} a maximal M-sequence, and consider $H^{j}\left(M \otimes K\left(y_{1}, \ldots, y_{s}, x_{1}, \ldots, x_{n}\right)\right)$.

So to deal with both cases, we need to investigate the relation between $K\left(y_{1}, \ldots, y_{s}, x_{1}, \ldots, x_{n}\right)$ and $K\left(x_{1}, \ldots, x_{n}\right)$ and the relation of their homologies.

Corollary 2.16. If x_{1}, \ldots, x_{n} is an M-sequence, then $H^{j}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right)=$ 0 for $j<n$ and $H^{n}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right)=M /\left(x_{1}, \ldots, x_{n}\right) M$.

Proof. By definition, $\operatorname{depth}(I, M) \geq n$, so $H^{j}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right)=0$ for $j<n$. On the other hand,

$$
\begin{aligned}
H^{n}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right) & =\operatorname{coker}\left(M \otimes \bigwedge^{n-1} N \rightarrow M \otimes \bigwedge^{n} N\right) \\
& =M \otimes \operatorname{coker}\left(\bigwedge^{n-1} N \rightarrow \bigwedge^{n} N\right) \\
& =M \otimes R /\left(x_{1}, \ldots, x_{n}\right)=M /\left(x_{1}, \ldots, x_{n}\right) M
\end{aligned}
$$

Here we use the fact that $M \otimes-$ is right-exact.
Theorem 2.15 can be strengthen for local rings.
Theorem 2.17. Let (R, \mathfrak{m}) be a local ring, $x_{1}, \ldots, x_{n} \in \mathfrak{m}$. Let M be a finitely generated R-module. If $H^{k}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right)=0$ for some k, then $H^{j}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right)=0$ for all $j<r$. Moreover, if $H^{n-1}(M \otimes$ $\left.K\left(x_{1}, \ldots, x_{n}\right)\right)=0$, then x_{1}, \ldots, x_{n} is an M-sequence.

Corollary 2.18. If R is local and $\left(x_{1}, \ldots, x_{n}\right)$ is a proper ideal containing an M-sequence of length n, then x_{1}, \ldots, x_{n} is an M-sequence.

Proof. $H^{n}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right)=M /\left(x_{1}, \ldots, x_{n}\right) M \neq 0$ by Nakayama's lemma. Take r minimal such that $H^{r}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right) \neq 0$, then every maximal M-sequence in $\left(x_{1}, \ldots, x_{n}\right)$ has length r, which implies that $r \geq n$. So $H^{n-1}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right)=0$ and x_{1}, \ldots, x_{n} is an M-sequence.

2.4. Operations on Koszul complexes.

Definition 2.19 (Tensor product of two complexes). Given two complexes

$$
\begin{aligned}
& \mathcal{F}: \cdots \rightarrow F_{i} \xrightarrow{\phi_{i}} F_{i+1} \rightarrow \ldots ; \\
& \mathcal{G}: \cdots \rightarrow G_{i} \xrightarrow{\psi_{i}} G_{i+1} \rightarrow \ldots
\end{aligned}
$$

define the tensor product

$$
\mathcal{F} \otimes \mathcal{G}: \cdots \rightarrow \bigoplus_{i+j=k} F_{i} \otimes G_{j} \xrightarrow{d_{k}} \bigoplus_{i+j=k+1} F_{i} \otimes G_{j} \rightarrow \ldots
$$

where the map $F_{i} \otimes G_{j} \rightarrow F_{i^{\prime}} \otimes G_{j^{\prime}}$ is $\left\{\begin{array}{ll}\phi_{i} \otimes 1 & \text { if } i^{\prime}=i+1 ; \\ (-1)^{i} 1 \otimes \psi_{j} & \text { if } j^{\prime}=j+1 ; \\ 0 & \text { otherwise. }\end{array}\right.$ (Check $d d=0$.

Definition 2.20 (Shift). Given a complex

$$
\mathcal{F}: \cdots \rightarrow F_{i} \xrightarrow{\phi_{i}} F_{i+1} \rightarrow \ldots ;
$$

Denote $\mathcal{F}[n]$ to be the complex obtained by shifting \mathcal{F} (to the left) n times. That is, $\mathcal{F}[n]_{i}=\mathcal{F}_{n+i}$, and the differential is multiplied by $(-1)^{n}$. Denote $R[n]$ to be the simple complex whose n-th position is R. Note that $\mathcal{F}[n]=$ $R[n] \otimes \mathcal{F}$.

Definition 2.21 (Mapping cone). For $y \in R$, consider $\mathcal{F}=K(y)$, that is,

$$
\mathcal{F}: 0 \rightarrow R \xrightarrow{y} R \rightarrow 0 .
$$

Then there is a natural exact sequence of complexes

$$
0 \rightarrow R[-1] \rightarrow \mathcal{F} \rightarrow R \rightarrow 0
$$

Tensoring a complex \mathcal{G}, this gives an exact sequence

$$
0 \rightarrow \mathcal{G}[-1] \rightarrow \mathcal{F} \otimes \mathcal{G} \rightarrow \mathcal{G} \rightarrow 0
$$

Here $\mathcal{F} \otimes \mathcal{G}$ is the mapping cone of the $\operatorname{map} \mathcal{G} \xrightarrow{y} \mathcal{G}$, in fact, it is given by

From this exact sequence, we get a long exact sequence of homologies

$$
\cdots \rightarrow H^{i-1}(\mathcal{G}) \xrightarrow{y} H^{i-1}(\mathcal{G}) \rightarrow H^{i}(\mathcal{F} \otimes \mathcal{G}) \rightarrow H^{i}(\mathcal{G}) \xrightarrow{y} \ldots
$$

Here note that $H^{i-1}(\mathcal{G})=H^{i}(\mathcal{G}[-1])$.
Proposition 2.22. If $N=N^{\prime} \oplus N^{\prime \prime}$, then $\bigwedge N=\bigwedge N^{\prime} \otimes \bigwedge N^{\prime \prime}$. If $x^{\prime} \in N$ and $x^{\prime \prime} \in N^{\prime \prime}$, take $x=\left(x^{\prime}, x^{\prime \prime}\right) \in N$, then $K(x)=K\left(x^{\prime}\right) \otimes K\left(x^{\prime \prime}\right)$.
Proof. Note that here the (skew-commutative) algebra structure of $\bigwedge N^{\prime} \otimes$ $\bigwedge N^{\prime \prime}$ is given by

$$
(a \otimes b) \wedge\left(a^{\prime} \otimes b^{\prime}\right)=(-1)^{\operatorname{deg} a^{\prime} \operatorname{deg} b}\left(\left(a \wedge a^{\prime}\right) \otimes\left(b \wedge b^{\prime}\right)\right)
$$

for homogenous elements. This is just linear algebra. It suffices to check the differentials coincide, that is, for $y^{\prime} \in \bigwedge N^{\prime}, y^{\prime \prime} \in \bigwedge N^{\prime \prime}, x \wedge\left(y^{\prime} \otimes y^{\prime \prime}\right)=$ $\left(x^{\prime} \otimes 1+1 \otimes x^{\prime \prime}\right) \wedge\left(y^{\prime} \otimes y^{\prime \prime}\right)=\left(x^{\prime} \wedge y^{\prime}\right) \otimes y^{\prime \prime}+(-1)^{\operatorname{deg} y^{\prime}} y^{\prime} \otimes\left(x^{\prime \prime} \wedge y^{\prime \prime}\right)$.

Corollary 2.23. If y_{1}, \ldots, y_{r} are elements in $\left(x_{1}, \ldots, x_{n}\right)$ and M is an R-module, then

$$
H^{*}\left(M \otimes K\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{r}\right)\right) \simeq H^{*}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right) \otimes \bigwedge R^{r}
$$

as graded modules, which means that
$H^{i}\left(M \otimes K\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{r}\right)\right) \simeq \bigoplus_{j+k=i} H^{j}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right) \otimes \bigwedge^{k} R^{r}$.
So $H^{i}\left(M \otimes K\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{r}\right)\right)=0$ iff $H^{j}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right)=0$ for any $i-r \leq j \leq i$.

Proof. As y_{1}, \ldots, y_{r} are elements in $\left(x_{1}, \ldots, x_{n}\right)$, there is an isomorphism

$$
R^{n} \oplus R^{r} \simeq R^{n} \oplus R^{r}
$$

sending $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ to $\left(x_{1}, \ldots, x_{n}, 0, \ldots, 0\right)$. So by functoriality of Koszul complex,

$$
\begin{aligned}
K\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{r}\right) & \simeq K\left(x_{1}, \ldots, x_{n}, 0, \ldots, 0\right) \\
& \simeq K\left(x_{1}, \ldots, x_{n}\right) \otimes K(0, \ldots, 0)
\end{aligned}
$$

Here

$$
K(0, \ldots, 0): 0 \rightarrow R \xrightarrow{0} \bigwedge^{2} R^{r} \xrightarrow{0} \ldots \xrightarrow{0} \bigwedge^{r} R^{r} \rightarrow 0
$$

Corollary 2.24. If $x=\left(x^{\prime}, y\right) \in N=N^{\prime} \oplus R$, then $K(x)$ is isomorphic to the mapping cone of $K\left(x^{\prime}\right) \xrightarrow{y} K\left(x^{\prime}\right)$. In particular, we have a long exact sequence

$$
\begin{array}{r}
\cdots \rightarrow H^{i}\left(M \otimes K\left(x^{\prime}\right)\right) \xrightarrow{y} H^{i}\left(M \otimes K\left(x^{\prime}\right)\right) \rightarrow H^{i+1}(M \otimes K(x)) \rightarrow \\
\rightarrow H^{i+1}\left(M \otimes K\left(x^{\prime}\right)\right) \xrightarrow{y} H^{i+1}\left(M \otimes K\left(x^{\prime}\right)\right) \rightarrow \ldots
\end{array}
$$

Proof. Note that $N^{\prime} \oplus R \simeq R \oplus N^{\prime}$. Hence $K(x) \simeq K\left(y, x^{\prime}\right)=K(y) \otimes K\left(x^{\prime}\right)$. This gives a short exact sequence

$$
0 \rightarrow K\left(x^{\prime}\right)[-1] \rightarrow K(x) \rightarrow K\left(x^{\prime}\right) \rightarrow 0
$$

Tensoring with M, we get

$$
0 \rightarrow M \otimes K\left(x^{\prime}\right)[-1] \rightarrow M \otimes K(x) \rightarrow M \otimes K\left(x^{\prime}\right) \rightarrow 0
$$

(Why exact?).
2.5. Proof of the main theorems. The following is a more precise version.

Corollary 2.25. If x_{1}, \ldots, x_{i} is an M-sequence, then

$$
H^{i}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right)=\left(\left(x_{1}, \ldots, x_{i}\right) M:\left(x_{1}, \ldots, x_{n}\right)\right) /\left(x_{1}, \ldots, x_{i}\right) M
$$

In particular, in this case, $H^{j}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right)=0$ for $j<i$. If $I M \neq M$ $\left(I=\left(x_{1}, \ldots, x_{n}\right)\right)$ and x_{1}, \ldots, x_{i} is a maximal M-sequence, then $H^{i}(M \otimes$ $\left.K\left(x_{1}, \ldots, x_{n}\right)\right) \neq 0$.

Proof. We do induction on i. If $i=0$ this is trivial. If $i>0$, then we do induction on n. If $n=i$, this follows easily by Example 2.14. If $n>i$, then by Corollary 2.24 , there is an exact sequence

$$
\begin{aligned}
& H^{i-1}\left(M \otimes K\left(x_{1}, \ldots, x_{n-1}\right)\right) \rightarrow H^{i}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right) \rightarrow \\
\rightarrow & H^{i}\left(M \otimes K\left(x_{1}, \ldots, x_{n-1}\right)\right) \xrightarrow{x_{n}} H^{i}\left(M \otimes K\left(x_{1}, \ldots, x_{n-1}\right)\right)
\end{aligned}
$$

Here by induction,
$H^{i-1}\left(M \otimes K\left(x_{1}, \ldots, x_{n-1}\right)\right)=\left(\left(x_{1}, \ldots, x_{i-1}\right) M:\left(x_{1}, \ldots, x_{n-1}\right)\right) /\left(x_{1}, \ldots, x_{i-1}\right) M=0$
as x_{i} is not a zeo-divisor of $M /\left(x_{1}, \ldots, x_{i-1}\right) M$ (this also proves the second statement). Hence $H^{i}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right)$ is just the kernel of

$$
H^{i}\left(M \otimes K\left(x_{1}, \ldots, x_{n-1}\right)\right) \xrightarrow{x_{n}} H^{i}\left(M \otimes K\left(x_{1}, \ldots, x_{n-1}\right)\right) .
$$

By induction,
$H^{i}\left(M \otimes K\left(x_{1}, \ldots, x_{n-1}\right)\right)=\left(\left(x_{1}, \ldots, x_{i}\right) M:\left(x_{1}, \ldots, x_{n-1}\right)\right) /\left(x_{1}, \ldots, x_{i}\right) M$,
so it easy to compute the kernel.
To show the last statement, note that I is contained in the set of zerodivisors on $M /\left(x_{1}, \ldots, x_{i}\right) M$, so I is contained in the union of associated primes and hence $I \subset \operatorname{ann}(x)$ for some non-zero $x \in M /\left(x_{1}, \ldots, x_{i}\right) M$ by Corollary 1.12. This implies that $\left(\left(x_{1}, \ldots, x_{i}\right) M: I\right) /\left(x_{1}, \ldots, x_{i}\right) M \neq 0$.

Proof of Theorem 2.15. Let y_{1}, \ldots, y_{s} be a maximal M-sequence and r be the minimal such that

$$
H^{r}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right) \neq 0
$$

The goal is to show that $r=s$.
By Corollary 2.23, r is the minimal such that

$$
H^{r}\left(M \otimes K\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{s}\right)\right) \neq 0
$$

If $I M \neq M$, then by Corollary $2.25, r=s$. So it suffices to show that $I M \neq$ M. This follows from Lemma $2.26(2)$ and the nonvanishing of homologies.

Lemma 2.26. (1) If $y \in\left(x_{1}, \ldots, x_{n}\right)$, then $H^{j}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right)$ is annihilated by y for any M and any j.
(2) If $\left(x_{1}, \ldots, x_{n}\right) M=M$, then $H^{j}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right)=0$ for any j.

Proof. (1) Here we give a different proof from the book (which uses dual Koszul complex). Note that by Corollary 2.24, there is a long exact sequence

$$
H^{j}\left(M \otimes K\left(x_{1}, \ldots, x_{n}, y\right)\right) \rightarrow H^{j}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right) \xrightarrow{y} H^{j}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

So the statement is equivalent to that the first arrow is surjective. By the proof of Corollary 2.23, this arrow splits.
(2) Replacing R by $R / \operatorname{ann}(M)$ will not change $M \otimes K\left(x_{1}, \ldots, x_{n}\right)$, so we may assume that $\operatorname{ann}(M)=0$. By $\left(x_{1}, \ldots, x_{n}\right) M=M$ and Lemma 1.2, there is $y \in\left(x_{1}, \ldots, x_{n}\right)$ such that $(1-y) M=0$, which implies that $y=$ $1 \in\left(x_{1}, \ldots, x_{n}\right)$. Then apply (1).

Proof of Theorem 2.17. We prove the first statement by induction on n. Suppose $H^{k}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right)=0$, then by Corollary 2.24,

$$
H^{k-1}\left(M \otimes K\left(x_{1}, \ldots, x_{n-1}\right)\right) \xrightarrow{x_{n}} H^{k-1}\left(M \otimes K\left(x_{1}, \ldots, x_{n-1}\right)\right)
$$

is surjective. Then by Nakayama's lemma, $H^{k-1}\left(M \otimes K\left(x_{1}, \ldots, x_{n-1}\right)\right)=0$. By induction, $H^{j}\left(M \otimes K\left(x_{1}, \ldots, x_{n-1}\right)\right)=0$ for $j \leq k-1$. By the long exact sequence in Corollary $2.24, H^{j}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right)=0$ for $j \leq k-1$.

We prove the second statement by induction on n. Suppose $H^{n-1}(M \otimes$ $\left.K\left(x_{1}, \ldots, x_{n}\right)\right)=0$, then as above, $H^{n-2}\left(M \otimes K\left(x_{1}, \ldots, x_{n-1}\right)\right)=0$, which implies that x_{1}, \ldots, x_{n-1} is an M-sequence by induction. Then by Corollary 2.25 ,
$0=H^{n-1}\left(M \otimes K\left(x_{1}, \ldots, x_{n}\right)\right)=\left(\left(x_{1}, \ldots, x_{n-1}\right) M:\left(x_{1}, \ldots, x_{n}\right)\right) /\left(x_{1}, \ldots, x_{n-1}\right) M$, which implies that x_{n} is not a zero-divisor of $M /\left(x_{1}, \ldots, x_{n-1}\right) M$.

3. Dimensions and Depths

In this section we introduce fundamental theory on dimension and depth, which are basic invariants measuring size of a ring or an ideal.
3.1. Dimension theory. Recall that the length of a chain $P_{r} \supset P_{r-1} \supset$ $\cdots \supset P_{0}$ is r.

Definition 3.1. (1) The (Krull) dimension $\operatorname{dim} R$ of a ring R is defined to be the supremum of the lengths of chains of prime ideals in R.
(2) The dimension of an ideal I is $\operatorname{dim} I=\operatorname{dim} R / I$.
(3) The codimension of an ideal I is codim $I=\min _{\text {pirme } P \supset I} \operatorname{dim} R_{P}$.

Remark 3.2. It is clear that $\operatorname{dim} I+\operatorname{codim} I \leq \operatorname{dim} R$. It is not always true that

$$
\operatorname{dim} I+\operatorname{codim} I=\operatorname{dim} R
$$

For example, consider $R=k[x, y, z] /(x y, x z)$ and $I=(x-1)$, then R corresponds to the union of a line $(x=0)$ and a plane $(y=z=0)$, and I corresponds to a point $(1,0,0)$. In this case, $\operatorname{dim} R=2, \operatorname{dim} I=0$, $\operatorname{codim} I=1$. So we need to require some irreducibility for the equality to be true.

Theorem 3.3. Let R be a domain finitely generated over a field, then

$$
\begin{equation*}
\operatorname{dim} R=\operatorname{tr} \cdot \operatorname{deg}_{k} R=\operatorname{tr} \cdot \operatorname{deg}_{k} \operatorname{Frac}(R) \tag{1}
\end{equation*}
$$

(2) $\operatorname{dim} R$ equals to the length of any maximal chains of prime ideals.
(3)

$$
\operatorname{dim} I+\operatorname{codim} I=\operatorname{dim} R
$$

Idea of proof. The proof uses the Noether normalization theorem: if $P_{r} \supset$ $P_{r-1} \supset \cdots \supset P_{0}$ a maximal chain (in the sense that one cannot interesest in any more primes), then there exists a subring $k\left[x_{1}, \ldots, x_{r}\right] \simeq S \subset R$ such that R is integral over S and $P_{i} \cap S=\left(x_{1}, \ldots, x_{i}\right)$.

This implies that

$$
\operatorname{dim} R=r=\operatorname{tr} \cdot \operatorname{deg}_{k} S=\operatorname{tr} \cdot \operatorname{deg}_{k} R
$$

For $(2) \Longrightarrow(3)$, we leave to exercise.
Theorem 3.4 (Equivalent definitions for dimension of a local ring). Let (R, \mathfrak{m}, k) be a local ring. Then $\operatorname{dim} R$ is equal to the following values:
(1) The minimal number d such that there exists elements $f_{1}, \ldots, f_{d} \in \mathfrak{m}$ not contained in any other primes in R (such f_{1}, \ldots, f_{d} is called a system of parameters.);
(2) $\operatorname{dim} R$ equals to the length of any maximal chains of prime ideals.
(3) $1+\operatorname{deg}\left(\operatorname{dim}_{k}\left(\mathfrak{m}^{n} / \mathfrak{m}^{n+1}\right)\right)$, here $\operatorname{dim}_{k}\left(\mathfrak{m}^{n} / \mathfrak{m}^{n+1}\right)$ coincides with a polynomial in n if $n \gg 0$.
3.2. Hilbert fuctions/polynomials. Here we explain more about the Hilbert function/polynomial. Consider the polynomial ring $S=k\left[x_{1}, \ldots, x_{n}\right]$ and a finitely generated graded S-module $M=\bigoplus_{i \in \mathbb{Z}} M_{i}$ (Recall that "graded" means that $f M_{i} \subset M_{i+d}$ if f is homogenous of degree $\left.d\right)$. Then we can consider the Hilbert function $H_{M}(d)=\operatorname{dim}_{k} M_{d}$ (Why finite?).

Lemma 3.5. There exists d_{0} such that $H_{M}(d)$ is a polynomial in d if $d \geq d_{0}$.

Proof. We do induction on n. If $n=0$ this is trivial $\left(H_{M}(d)=0\right.$ if $\left.d \gg 0\right)$. If $n>0$, then consider the multiplication map

$$
0 \rightarrow K_{d} \rightarrow M_{d} \xrightarrow{x_{n}} M_{d+1} \rightarrow C_{d} \rightarrow 0
$$

Then $K=\bigoplus_{i \in \mathbb{Z}} K_{i}$ and $C=\bigoplus_{i \in \mathbb{Z}} C_{i}$ are finitely generated graded S modules. As the multiplications of x_{n} on K, C are $0, K, C$ are actually finitely generated graded $S /\left(x_{n}\right)$-modules. By dimension computing, we have

$$
H_{M}(d+1)-H_{M}(d)=H_{C}(d)-H_{K}(d) .
$$

RHS is a polynomial for $d \geq d_{0}$ by induction hypothesis. So $H_{M}(d)$ is a polynomial for $d \geq d_{0}$.

To conclude that $\operatorname{dim}_{k}\left(\mathfrak{m}^{n} / \mathfrak{m}^{n+1}\right)$ coincides with a polynomial in n if $n \gg 0$, we apply this lemma to $M=\bigoplus_{i \geq 0} \mathfrak{m}^{i} / \mathfrak{m}^{i+1}$.
3.3. Regular local rings. We first give some useful corollaries.

Corollary 3.6. Let (R, \mathfrak{m}, k) be a local ring. Then $\operatorname{dim} R \leq \operatorname{dim}{ }_{k} \mathfrak{m} / \mathfrak{m}^{2}$.
Proof. By Nakayama's lemma, $\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}$ is the number of a minimal set of generators of \mathfrak{m}.
Corollary 3.7. Let R be ring and $I=\left(x_{1}, \ldots, x_{r}\right) \neq R$. If P is minimal among all primes containing I, then $\operatorname{codim} P \leq r$. In particular, $\operatorname{codim} I \leq$ r.
Proof. Apply Theorem 3.4 to R_{P}.
Corollary 3.8. Let (R, \mathfrak{m}) be a local ring and $x \in \mathfrak{m}$ not a zero-divisor. Then $\operatorname{codim}(x)=1$ and $\operatorname{dim} R /(x)=\operatorname{dim} R-1$.
Proof. By Corollary 3.7, $\operatorname{codim}(x) \leq 1$. If $\operatorname{codim}(x)=0$, then (x) is contained in a minimal prime, which implies that x is a zero-divisor (Remark 1.11), a contradiction.

By definition, $d=\operatorname{dim} R /(x) \leq \operatorname{dim} R-\operatorname{codim}(x)=\operatorname{dim} R-1$. On the other hand, if $\bar{x}_{1}, \ldots, \bar{x}_{d}$ is a system of parameters of $\operatorname{dim} R /(x)$, then $\left(x, x_{1}, \ldots, x_{r}\right) \subset \mathfrak{m}$ is not contained in other primes, so $\operatorname{dim} R \leq d+1$.
Definition 3.9. A local ring (R, \mathfrak{m}, k) is regular if $\operatorname{dim} R=\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}$, or equivalently, \mathfrak{m} is generated by $d=\operatorname{dim} R$ elements f_{1}, \ldots, f_{d} (called a regular system of parameters). A ring is regular if its localization at every prime is regular.
Example 3.10. $k\left[x_{1}, \ldots, x_{n}\right]$ is regular, $k[x, y] /\left(x^{2}-y^{3}\right)$ is not regular.
The following tells that a regular system is actually a regular sequence.
Corollary 3.11. Let (R, \mathfrak{m}, k) be a regular local ring and f_{1}, \ldots, f_{d} a regular system of parameters, then f_{1}, \ldots, f_{d} is a regular sequence.
Proof. We prove by induction on i that (1) $R /\left(f_{1}, \ldots, f_{i}\right)$ is a regular local ring and $\operatorname{dim} R /\left(f_{1}, \ldots, f_{i}\right)=d-i$, (2) f_{i+1} is not a zero-divisor on $R /\left(f_{1}, \ldots, f_{i}\right)$.

Note that (1) holds for $i=0$ By the next corollary, a regular local ring is a domain, so if (1) holds for i, then (2) holds for i.

Finally, if (2) holds for i, then (1) holds for $i+1$ by Corollary 3.8, as $\operatorname{dim} R /\left(f_{1}, \ldots, f_{i+1}\right)=\operatorname{dim} R /\left(f_{1}, \ldots, f_{i}\right)-1=d-i-1$ and its maximal ideal is generated by $d-i-1$ elements.

Corollary 3.12. Let (R, \mathfrak{m}, k) be a regular local ring. Then R is a domain.
Proof. We do induction on $d=\operatorname{dim} R$. If $d=0$, then $\mathfrak{m}=0$ and R is a field. If $d>0$, then $\mathfrak{m} \neq \mathfrak{m}^{2}$ and \mathfrak{m} is not minimal. So we can find $x \in \mathfrak{m}$ not in \mathfrak{m}^{2} and not in any minimal primes of R (Why?). Consider $S=R /(x)$. Then $\operatorname{dim} S<\operatorname{dim} R$ and $\operatorname{dim} S \geq \operatorname{dim} R-1$, so $\operatorname{dim} S=\operatorname{dim} R-1$. Take $\mathfrak{n}=\mathfrak{m} \cap S$. Note that $\mathfrak{n} / \mathfrak{n}^{2}=\mathfrak{m} /\left(\mathfrak{m}^{2}+(x)\right) \subset \mathfrak{m} / \mathfrak{m}^{2}$ is a proper subspace, it can be generated by $d-1$ element, so S is regular of dimension $d-1$. By induction hypothesis, S is a domain. So (x) is prime. There exists a minimal prime $Q \subsetneq(x)$. For any $y \in Q, y=a x$ and $x \notin Q$, so $a \in Q$. This implies that $Q=x Q$, so $Q=0$ by Nakayama's lemma.

3.4. Depth versus codimension, Cohen-Macaulay rings.

Proposition 3.13. Let R be a ring and I an ideal. Then $\operatorname{depth}(I, R) \leq$ codim I.

The geometric meaning of this proposition is easy to understand: if $V(I)$ is contained in r hypersurfaces intersecting "properly", then its codimension is at most r.

Proof. Let x_{1}, \ldots, x_{r} be a maximal regular sequence in I. Since x_{1} is a non-zero-divisor, x_{1} is not contained in any minimal primes, so codim $I /\left(x_{1}\right) \leq$ $\operatorname{codim} I-1$. By induction, $\operatorname{codim} I /\left(x_{1}\right) \geq \operatorname{depth}\left(I /\left(x_{1}\right), R /\left(x_{1}\right)\right)=n-$ 1.

So it is interesting to investigate the equality case.
Definition 3.14. R is a Cohen-Macaulay ring if $\operatorname{depth}(I, R)=\operatorname{codim} I$ for every proper ideal I.

Theorem 3.15. R is Cohen-Macaulay iff $\operatorname{depth}(P, R)=\operatorname{codim} P$ for every maximal ideal P.

Proof. It suffices to show that if $\operatorname{depth}(P, R)=\operatorname{codim} P$ for every maximal ideal P, then $\operatorname{depth}(I, R) \geq \operatorname{codim} I$.

We first show that depth (I, R) can be localized, that is, there exists a maximal ideal P such that $\operatorname{depth}(I, R)=\operatorname{depth}\left(I_{P}, R_{P}\right)$. Using the Koszul complex (Theorem 2.15), depth (I, R) is the minimal integer r such that $H^{r}\left(K\left(x_{1}, \ldots, x_{n}\right)\right) \neq 0$, where $I=\left(x_{1}, \ldots, x_{n}\right)$, so there exists a maximal ideal P such that $H^{r}\left(K\left(x_{1}, \ldots, x_{n}\right)\right)_{P} \neq 0$, which implies that depth $(I, R)=$ $\operatorname{depth}\left(I_{P}, R_{P}\right)$.

So after localization, we may assume that (R, P) is a local ring.
If P is the only prime containing I, then $\operatorname{codim} P=\operatorname{codim} I$ by definition. We claim that depth $P=\operatorname{depth} I$. It suffices to show that depth $P \leq \operatorname{depth} I$. As R / I is a local ring which has only one prime P, it can be shown that $P^{k} \subset I$ for some integer k (consider the radical of 0). Let x_{1}, \ldots, x_{r} be a maximal regular sequence in P, then $x_{1}^{k}, \ldots, x_{r}^{k} \in I$, which is also a regular sequence (see Exercise). So depth $P \leq \operatorname{depth} I$.

Suppose that P is the only prime containing I. By the Noetherian induction, we may assume that I is maximal among those satisfying depth $(I, R)<$ $\operatorname{codim} I$. We can take an element $x \in P$ but not in any minimal primes containing I, then $\operatorname{depth}(I+(x), R)=\operatorname{codim}(I+(x)) \geq \operatorname{codim} I+1$. So we finish the proof by showing $r=\operatorname{depth}(I+(x), R) \leq \operatorname{depth}(I, R)+1$. Suppose $I=\left(x_{1}, \ldots, x_{n}\right)$ and $I+(x)=\left(x_{1}, \ldots, x_{n}, x\right)$. By the Koszul complex (Theorem 2.15), $H^{j}\left(K\left(x_{1}, \ldots, x_{n}, x\right)\right)=0$ for $j<r$, which implies that $H^{j}\left(K\left(x_{1}, \ldots, x_{n}\right)\right)=0$ for $j<r-1$ by Corollary 2.24 and Nakayama's lemma, so $\operatorname{depth}(I, R) \geq r-1$.

Finally we prove a property of CM ring.
Theorem 3.16 (Exercise). Let (R, \mathfrak{m}) be a local ring and $x \in \mathfrak{m}$ is not a zero-divisor. Then R is $C M$ iff $R /(x)$ is $C M$.

References

[1] Atiyah, MacDonald, Introduction to commutative algebra.
[2] Eisenbud, Commutative algebra with a view toward algebraic geometry.
Shanghai Center for Mathematical Sciences, Fudan University, Jiangwan Campus, 2005
Songhu Road, Shanghai, 200438, China
E-mail address: chenjiang@fudan.edu.cn

