COMMUTATIVE ALGEBRA NOTES

CHEN JIANG

Contents

1. Introduction	1
1.1. Nakayama's lemma	1
1.2. Noetherian rings	2
1.3. Associated primes	3
1.4. Tensor products and Tor	3
2. Koszul complexes and regular sequences	6
2.1. Regular sequences	6
2.2. Koszul complexes	6
2.3. Koszul complexes versus regular sequences	8
2.4. Operations on Koszul complexes	9
2.5. Proof of the main theorems	11
3. Dimensions and depths	12
3.1. Dimension theory	13
3.2. Hilbert fuctions/polynomials	13
3.3. Regular local rings	14
3.4. Depth versus codimension, Cohen–Macaulay rings	15
References	16

1. INTRODUCTION

In this lecture, we consider a (Noetherian) commutative ring R with identity element.

I will assume that students know about basic definitions and properties of rings, ideals, modules, morphisms (e.g. Chapter 1–3 of [1]). Our main textbook is [2]. We will cover selected topics in order to serve the lecture of geometry of syzygies ([2, Section 17–19]).

1.1. Nakayama's lemma. The Jacobson radical J(R) of R is the intersection of all maximal ideals. Note that $y \in J(R)$ iff 1 - xy is a unit in R for every $x \in R$.

Theorem 1.1 (Nakayama's lemma). Let I be an ideal contained in the Jacobson radical of R, and M a finitely generated R-module. If IM = M, then M = 0.

Lemma 1.2. Let I be an R-ideal and M a finitely generated R-module. If IM = M, then there exists $y \in I$ such that (1 - y)M = 0.

Date: July 23, 2020.

Proof. This is a consequence of the Caylay–Hamilton theorem. Consider m_1, \ldots, m_n a set of generators in M, then there exists an $n \times n$ matrix A with coefficients in I such that $(m_1, \ldots, m_n)^T = A(m_1, \ldots, m_n)^T$. Set $\mathbf{m} = (m_1, \ldots, m_n)^T$. Hence $(I_n - A)\mathbf{m} = 0$. Note that $\operatorname{adj}(I_n - A)(I_n - A) = \operatorname{det}(I_n - A)I_n$, we know that $\operatorname{det}(I_n - A)\mathbf{m} = 0$, that is, $\operatorname{det}(I_n - A)m_i = 0$ for all i. This implies that $\operatorname{det}(I_n - A)M = 0$.

Example 1.3. If we do not assume that M is finitely generated, this is not true. For example, consider $R = k[[x]], M = k[[x, x^{-1}]].$

Corollary 1.4. Let I be an ideal contained in the Jacobson radical of R, and M a finitely generated R-module. If N + IM = M for some submodule $N \subset M$, then M = N.

Proof. Apply Nakayama's lemma to M/N.

Corollary 1.5. Let (R, \mathfrak{m}) be a local ring and M a finitely generated R-module. Consider $m_1, \ldots, m_n \in M$. If $\overline{m}_1, \ldots, \overline{m}_n \in M/\mathfrak{m}M$ is a basis (as a R/\mathfrak{m} -vector space), then m_1, \ldots, m_n generates M (which is also a minimal set of generators.)

Proof. Apply Corollary 1.4 to N the submodule generated by m_1, \ldots, m_n .

1.2. Noetherian rings.

Definition 1.6 (Noetherian ring). A ring R is *Noetherian* if one of the following equivalent conditions holds:

- (1) Every non-empty set of ideals has a maximal element;
- (2) The set of ideals satisfies the ascending chain condition (ACC);
- (3) Every ideal is finitely generated.

In this lecture, we assume all rings are Noetherian and all modules are finitely generated for simplicity.

Theorem 1.7 (Hilbert basis theorem). If R is Noetherian, then R[x] is Noetherian.

Idea of proof. Consider $I \subset R[x]$ an ideal. Consider $J \subset R$ the leading coefficients of I, then J is finitely generated. We may assume that J is generated by the leading coefficients of $f_1, \ldots, f_n \in R[x]$. Take I' be the ideal generated by f_1, \ldots, f_n , then it is easy to see that any $f \in I$ can be written as f = f' + g with $f' \in I'$ and $\deg g < \max_i \{\deg f_i\} = r$. So

$$I = I \cap (R \oplus Rx \oplus \dots \oplus Rx^{r-1}) + I'$$

is finitely generated. (Check that $I \cap (R \oplus Rx \oplus \cdots \oplus Rx^{r-1})$ is finitely generated!) \Box

Example 1.8. Any quotient of polynomial ring $k[x_1, \ldots, x_n]/I$ is Noetherian.

1.3. Associated primes. We will use the notion (A : B) to define the set $\{a \mid aB \subset A\}$ whenever it makes sense. For example, if $N, N' \subset M$ are R-modules and I an ideal, then we can define (N : I) as a submodule of M, and (N' : N) an ideal. Usually the set (0 : N) is denoted by $\operatorname{ann}(N)$ and called the *annihilator* of N, that is, the set of elements whose multiplication action kills N.

Definition 1.9 (Associated prime). A prime P of R is associated to M if $P = \operatorname{ann}(x)$ for some $x \in M$.

Associated primes are important in the primary decomposition. But here we mainly focus on its relation with zero-divisors.

Theorem 1.10. Let R be a Noetherian ring and M a finitely generated R-module. Then the union of associated primes to M consists of zero and zero-divisors. Moreover, there are only finitely many associated primes.

Proof. We want to show that

a

$$\bigcup_{\operatorname{nn}(x): \operatorname{prime}} \operatorname{ann}(x) = \bigcup_{x \neq 0} \operatorname{ann}(x).$$

So it suffices to show that if $\operatorname{ann}(y)$ is maximal among all $\operatorname{ann}(x)$, then $\operatorname{ann}(y)$ is prime. Consider $rs \in \operatorname{ann}(y)$ such that $s \notin \operatorname{ann}(y)$, then rsy = 0 but $sy \neq 0$. We know that $\operatorname{ann}(y) \subset \operatorname{ann}(sy)$, so equality holds by maximality. This implies that $r \in \operatorname{ann}(y)$.

To prove the finiteness, we only outline the idea here. Denote Ass(M) the set of associated primes. Then it is not hard to see that for a short exact sequence

$$0 \to M' \to M \to M'' \to 0,$$

we have

$$\operatorname{Ass}(M') \subset \operatorname{Ass}(M) \subset \operatorname{Ass}(M') \cup \operatorname{Ass}(M'').$$

So inductively we get the finiteness.

A

Remark 1.11. Another fact is that if P is a prime minimal among all primes containing $\operatorname{ann}(M)$, then P is an associated prime.

Corollary 1.12. Let R be a Noetherian ring and M a finitely generated R-module. Let I be an ideal. Then either I contains a non zero-divisor on M, or I annihilated a non-zero element of M.

Proof. Suppose that I contains only zero-divisors on M, then by Theorem 1.10, $I \subset \bigcup_{\operatorname{ann}(x): \text{prime}} \operatorname{ann}(x)$. So the conclusion follows from the following easy lemma.

Lemma 1.13. Let I be an ideal and let P_1, \ldots, P_n be primes of R. If $I \subset \bigcup_i P_i$, then $I \subset P_i$ for some i.

1.4. Tensor products and Tor. Let M, N be R-modules, the *tensor prod*uct $M \otimes N$ is defined by the module generated by

$$\{m \otimes n \mid m \in M, n \in N\},\$$

modulo relations

$$(m+m')\otimes n=m\otimes n+m'\otimes n;$$

$$m \otimes (n+n') = m \otimes n + m \otimes n';$$

(rm) $\otimes n = m \otimes (rn) = r(m \otimes n)$

for $m \in M, n \in N, r \in R$. It can be characterized by the universal property that if $f: M \times N \to P$ is an *R*-bilinear map, then there exists a unique $g: M \otimes N \to P$ such that f factors through g.

Example 1.14. (1) $M \otimes R \simeq M, \ M \otimes R^n \simeq M^n;$ (2) $M \otimes R/I \simeq M/IM;$ (2) $(M \otimes R/I \simeq M/IM;$

(3) $(M \otimes_R N)_P \simeq M_P \otimes_{R_P} N_P.$

Proposition 1.15. $(-\otimes N)$ is a right-exact functor. If

$$M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

is a exact sequence of R-modules, then

$$M' \otimes N \xrightarrow{f \otimes 1} M \otimes N \xrightarrow{g \otimes 1} M'' \otimes N \to 0$$

is exact.

Definition 1.16 (Flat module). N is *flat* if $(- \otimes N)$ is an exact functor, that is, if

$$0 \to M' \to M \to M'' \to 0$$

is a exact sequence of R-modules, then

$$0 \to M' \otimes N \to M \otimes N \to M'' \otimes N \to 0$$

is exact.

To study flatness, we need to introduce Tor from homological algebra.

Definition 1.17 (Projective module). An *R*-module *M* is *projective* if for any surjective map $f : N_1 \to N_2$ and any map $g : M \to N_2$, there exists $h: M \to N_1$ such that $f \circ h = g$.

Example 1.18. Free modules are flat and projective.

Definition 1.19 (Complexes and homologies). A *complex* of *R*-modules is a sequence of *R*-modules with (differential) homomorphisms

$$\mathcal{F}: \dots \to F_{i+1} \xrightarrow{\delta_{i+1}} F_i \xrightarrow{\delta_i} F_{i-1} \to \dots$$

such that $\delta_i \delta_{i+1} = 0$ for each *i*. Denote the homology to be $H_i(\mathcal{F}) = \ker(\delta_i)/\operatorname{im}(\delta_{i+1})$. We say that \mathcal{F} is exact at degree *i* if $H_i(\mathcal{F}) = 0$. A morphism of complexes $\phi : \mathcal{F} \to \mathcal{G}$ is given by $\phi_i : F_i \to G_i$ commuting with differentials, that is, we have a commutative diagram

$$\mathcal{F}: \qquad \dots \longrightarrow F_{i+1} \longrightarrow F_i \longrightarrow F_{i-1} \longrightarrow \dots$$
$$\downarrow \phi_{i+1} \qquad \qquad \downarrow \phi_i \qquad \qquad \qquad \downarrow \phi_{i-1}$$
$$\mathcal{G}: \qquad \dots \longrightarrow G_{i+1} \longrightarrow G_i \longrightarrow G_{i-1} \longrightarrow \dots$$

This naturally gives morphisms between homologies $\phi_i : H_i(\mathcal{F}) \to H_i(\mathcal{G})$.

Definition 1.20 (Projective resolution). A projective resolution of an R-module M is a complex of projective modules

$$\mathcal{F}:\cdots\to F_n\to\cdots\to F_1\xrightarrow{\phi_1}F_0$$

which is exact and $coker(\phi_1) = M$. Sometimes we also denote it by

 $\mathcal{F}: \dots \to F_n \to \dots \to F_1 \xrightarrow{\phi_1} F_0(\to M \to 0).$

Definition 1.21 (Left derived functor). Let T be a right-exact functor. Given a projective resolution of an R-module M:

$$\mathcal{F}: \dots \to F_n \to \dots \to F_1 \xrightarrow{\phi_1} F_0(\to M \to 0).$$

Define the *left derived functor* by $L_iT(M) := H_i(T\mathcal{F})$, which is just the homology of

$$T\mathcal{F}: \dots \to T(F_n) \to \dots \to T(F_1) \to T(F_0) (\to T(M) \to 0).$$

We collect basic properties of derived functors here.

Proposition 1.22. (1) $L_0T(M) = T(M);$

- (2) $L_iT(M)$ is independent of the choice of projective resolution;
- (3) If M is projective, then $L_iT(M) = 0$ for i > 0.
- (4) For a short exact sequence of *R*-modules

$$0 \to A \to B \to C \to 0,$$

we have a long exact sequence

Definition 1.23 (Tor). For an *R*-module *N*, $\operatorname{Tor}_{i}^{R}(-, N)$ is defined by $L_{i}T(-)$ where $T = (- \otimes N)$.

Remark 1.24. So to compute $\operatorname{Tor}_{i}^{R}(M, N)$, we should pick a projective resolution \mathcal{F} of M and compute $H_{i}(\mathcal{F} \otimes N)$. Note that tensor products are symmetric, that is, $M \otimes N \simeq N \otimes M$, it can be seen that $\operatorname{Tor}_{i}^{R}(M, N) \simeq \operatorname{Tor}_{i}^{R}(N, M)$, and $\operatorname{Tor}_{i}^{R}(M, N)$ can be also computed by pick a projective resolution \mathcal{G} of N and compute $H_{i}(M \otimes \mathcal{G})$.

Theorem 1.25. TFAE:

- (1) N is flat;
- (2) $\operatorname{Tor}_{i}^{R}(M,N) = 0$ for all i > 0 and all M;
- (3) $\operatorname{Tor}_{1}^{R}(M, N) = 0$ for all M.

Proof. (1) \implies (2): take a projective resolution \mathcal{F} of M, we need to compute $H_i(\mathcal{F} \otimes N)$. As N is flat, $\mathcal{F} \otimes N$ is exact, hence $\operatorname{Tor}_i^R(M, N) = 0$ for all i > 0.

(2) \implies (3): trivial.

 $(3) \implies (1)$: this follows from the long exact sequence

$$\operatorname{Tor}_1^R(M'',N) \to M' \otimes N \to M \otimes N \to M'' \otimes N \to 0.$$

2. Koszul complexes and regular sequences

2.1. Regular sequences.

Definition 2.1 (Regular sequence). Let R be a ring and M an R-module. A sequence of elements $x_1, \ldots, x_n \in R$ is called a *regular sequence* on M (or M-sequence) if

- (1) $(x_1,\ldots,x_n)M \neq M;$
- (2) For each $1 \le i \le n$, x_i is not a zero-divisor on $M/(x_1, \ldots, x_{i-1})M$.

Definition 2.2 (Depth). Let R be a ring, I an ideal, and M an R-module. Suppose $IM \neq M$. The *depth* of I on M, depth(I, M), is defined by the maximal length of M-sequences in I.

Remark 2.3. (1) If M = R, then simply denote depth I := depth(I, M).
(2) We will see soon (Theorem 2.15) that any maximal M-sequence has the same length.

Example 2.4. If $R = k[x_1, \ldots, x_n]$, then x_1, \ldots, x_n is a regular sequence. We will see soon that depth $(x_1, \ldots, x_n) = n$.

Remark 2.5. The depth measures the size of an ideal, and an element in the regular sequence corresponds to a hypersurface in geometry. So a regular sequence in I corresponds to a set of hypersurface containing V(I) intersecting each other "properly". Consider for example R = k[x, y] or k[x, y]/(xy), I = (x, y).

2.2. Koszul complexes.

Definition 2.6 (Complexes and homologies). A *complex* of *R*-modules is a sequence of *R*-modules with homomorphisms

$$\mathcal{F}: \dots \to M_{i-1} \xrightarrow{\delta_{i-1}} M_i \xrightarrow{\delta_i} M_{i+1} \to \dots$$

such that $\delta_i \delta_{i-1} = 0$ for each *i*. Denote the *(co)homology* to be $H^i(\mathcal{F}) = \ker(\delta_i)/\operatorname{im}(\delta_{i-1})$.

We will introduce Koszul complexes and explain how regular sequences are related to Koszul complexes.

Example 2.7 (Koszul complex of length 1). Given $x \in R$. The Koszul complex of length 1 is given by

$$K(x): 0 \to R \xrightarrow{x} R \to 0.$$

Note that $H^0(K(x)) = (0:x), H^1(K(x)) = R/xR$. Then x is an R-sequence if (1) $H^1(K(x)) \neq 0$; (2) $H^0(K(x)) = 0$.

Example 2.8 (Koszul complex of length 2). Given $x, y \in R$. The Koszul complex of length 2 is given by

$$K(x,y): 0 \to R \xrightarrow{\begin{pmatrix} y \\ x \end{pmatrix}} R^{\oplus 2} \xrightarrow{\begin{pmatrix} -x & y \end{pmatrix}} R \to 0$$

Note that $H^0(K(x,y)) = (0 : (x,y))$. $H^2(K(x,y)) = R/(x,y)R$. We can compute $H^1(K(x,y))$ (Exercise). It turns out that if x is not a zero-divisor in R, then $H^1(K(x,y)) \simeq (x : y)/(x)$. So $H^1(K(x,y)) = 0$ if and only if y is not a zero-divisor of R/(x). In conclusion, x, y is an R-sequence if (1) $H^2(K(x,y)) \neq 0$; (2) $H^0(K(x,y)) = H^1(K(x,y)) = 0$.

Theorem 2.9. Let (R, \mathfrak{m}) be a local ring and $x, y \in \mathfrak{m}$. Then x, y is a regular sequence iff $H^1(K(x, y)) = 0$. In particular, x, y is a regular sequence iff y, x is a regular sequence.

Proof. This is not a direct consequence of the above argument, as we need to show that x is a non-zero-divisor (equivalent to $H^0(K(x)) = 0$). Write K(x, y) as the following:

$$0 \longrightarrow R \xrightarrow{x} R \xrightarrow{x} R \longrightarrow 0$$

$$y \bigoplus y \bigoplus y$$

$$0 \longrightarrow R \xrightarrow{-x} R \longrightarrow 0.$$

Then this gives a short exact sequence of complexes

$$\begin{split} K(x)[-1]: & 0 \longrightarrow R \xrightarrow{-x} R \longrightarrow 0 \\ & \downarrow & \downarrow_{i_2} & \downarrow_1 \\ K(x,y): 0 \longrightarrow R \longrightarrow R^2 \longrightarrow R \longrightarrow 0 \\ & \downarrow_1 & \downarrow_{p_1} & \downarrow \\ K(x): 0 \longrightarrow R \xrightarrow{x} R \longrightarrow 0 \end{split}$$

That is,

$$0 \to K(x)[-1] \to K(x,y) \to K(x) \to 0.$$

Then this induces a long exact sequences of homologies

$$H^0(K(x)) \xrightarrow{y} H^0(K(x)) \to H^1(K(x,y)) \to H^1(K(x)).$$

So $H^1(K(x,y)) = 0$ implies that $yH^0(K(x)) = H^0(K(x))$, which means that $H^0(K(x)) = 0$ by Nakayama's lemma.

Corollary 2.10. Let (R, \mathfrak{m}) be a local ring and $x_1, \ldots, x_n \in \mathfrak{m}$. Suppose that x_1, \ldots, x_n is a regular sequence, then any permutation of x_1, \ldots, x_n is again a regular sequence. (Exercise.)

We will define Koszul complexes and show this correspondence in general.

Definition 2.11 (Exterior algebra). Let N be an R-module. Denote the *tensor algebra*

$$T(N) = R \oplus N \oplus (N \otimes N) \oplus \dots$$

The exterior algebra $\bigwedge N = \bigoplus_m \bigwedge^m N$ is defined by T(N) modulo the relations $x \otimes x$ (and hence $x \otimes y + y \otimes x$) for $x, y \in N$. The product of $a, b \in \bigwedge N$ is written as $a \wedge b$.

Definition 2.12 (Koszul complex). Let N be an R-module, $x \in N$. Define the Koszul complex to be

$$K(x): 0 \to R \to N \to \bigwedge^2 N \to \dots \to \bigwedge^i N \xrightarrow{d_x} \bigwedge^{i+1} N \to \dots$$

where d_x sends a to $x \wedge a$. If $N \simeq \mathbb{R}^n$ is a free module of rank n (we always consider this situation) and $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, then we denote K(x) by $K(x_1, \ldots, x_n)$.

Remark 2.13. (1) The $R \to N$ maps 1 to x.

(2) Consider $N = R^2$ (with basis e_1, e_2) and $x = (x_1, x_2)$, then $\bigwedge^2 N \simeq R$ (with bases $e_1 \land e_2$), and the map $N \to \bigwedge^2 N$ is given by $e_1 \mapsto (x_1e_1 + x_2e_2) \land e_1 = -x_2e_1 \land e_2$ and $e_2 \mapsto x_1e_1 \land e_2$. In other words,

$$K(x_1, x_2): 0 \to R \xrightarrow{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}} R^{\oplus 2} \xrightarrow{\begin{pmatrix} -x_2 & x_1 \end{pmatrix}} R \to 0.$$

Example 2.14. $H^n(K(x_1, \ldots, x_n)) = R/(x_1, \ldots, x_n)$. Consider the corresponding complex

$$\bigwedge^{n-1} N \xrightarrow{d_x} \bigwedge^n N \to \bigwedge^{n+1} N = 0$$

Denote e_1, \ldots, e_n to be a basis of $N \simeq R^n$, then the basis of $\bigwedge^n N$ is just $e_1 \land \cdots \land e_n$, and the basis of $\bigwedge^{n-1} N$ is $e_1 \land \cdots \land \hat{e}_i \land \cdots \land e_n$ $(1 \le i \le n)$. d_x maps $e_1 \land \cdots \land \hat{e}_i \land \cdots \land e_n$ to $(-1)^{i-1} x_i e_1 \land \cdots \land e_n$. So $\operatorname{im} d_x = (x_1, \ldots, x_n)$ and $H^n(K(x_1, \ldots, x_n)) = R/(x_1, \ldots, x_n)$.

2.3. Koszul complexes versus regular sequences. Now we can state the main theorem of this section.

Theorem 2.15. Let M be a finitely generated R-module. If

$$H^{j}(M \otimes K(x_1, \dots, x_n)) = 0$$

for j < r and $H^r(M \otimes K(x_1, \ldots, x_n)) \neq 0$, then every maximal M-sequence in $I = (x_1, \ldots, x_n) \subset R$ has length r.

Idea of proof. Firstly, we consider the case that x_1, \ldots, x_s is a maximal *M*-sequence. In this case it is natural to prove this case by induction on n and s.

In order to reduce the general case to this case, we consider y_1, \ldots, y_s a maximal *M*-sequence, and consider $H^j(M \otimes K(y_1, \ldots, y_s, x_1, \ldots, x_n))$.

So to deal with both cases, we need to investigate the relation between $K(y_1, \ldots, y_s, x_1, \ldots, x_n)$ and $K(x_1, \ldots, x_n)$ and the relation of their homologies.

Corollary 2.16. If x_1, \ldots, x_n is an M-sequence, then $H^j(M \otimes K(x_1, \ldots, x_n)) = 0$ for j < n and $H^n(M \otimes K(x_1, \ldots, x_n)) = M/(x_1, \ldots, x_n)M$.

Proof. By definition, depth $(I, M) \ge n$, so $H^j(M \otimes K(x_1, \ldots, x_n)) = 0$ for j < n. On the other hand,

$$H^{n}(M \otimes K(x_{1}, ..., x_{n})) = \operatorname{coker}(M \otimes \bigwedge^{n-1} N \to M \otimes \bigwedge^{n} N)$$
$$= M \otimes \operatorname{coker}(\bigwedge^{n-1} N \to \bigwedge^{n} N)$$
$$= M \otimes R/(x_{1}, ..., x_{n}) = M/(x_{1}, ..., x_{n})M.$$

Here we use the fact that $M \otimes -$ is right-exact.

Theorem 2.15 can be strengthen for local rings.

Theorem 2.17. Let (R, \mathfrak{m}) be a local ring, $x_1, \ldots, x_n \in \mathfrak{m}$. Let M be a finitely generated R-module. If $H^k(M \otimes K(x_1, \ldots, x_n)) = 0$ for some k, then $H^j(M \otimes K(x_1, \ldots, x_n)) = 0$ for all j < r. Moreover, if $H^{n-1}(M \otimes K(x_1, \ldots, x_n)) = 0$, then x_1, \ldots, x_n is an M-sequence.

Corollary 2.18. If R is local and (x_1, \ldots, x_n) is a proper ideal containing an M-sequence of length n, then x_1, \ldots, x_n is an M-sequence.

Proof. $H^n(M \otimes K(x_1, \ldots, x_n)) = M/(x_1, \ldots, x_n)M \neq 0$ by Nakayama's lemma. Take r minimal such that $H^r(M \otimes K(x_1, \ldots, x_n)) \neq 0$, then every maximal M-sequence in (x_1, \ldots, x_n) has length r, which implies that $r \geq n$. So $H^{n-1}(M \otimes K(x_1, \ldots, x_n)) = 0$ and x_1, \ldots, x_n is an M-sequence. \Box

2.4. Operations on Koszul complexes.

Definition 2.19 (Tensor product of two complexes). Given two complexes

$$\mathcal{F}: \dots \to F_i \xrightarrow{\phi_i} F_{i+1} \to \dots;$$
$$\mathcal{G}: \dots \to G_i \xrightarrow{\psi_i} G_{i+1} \to \dots$$

define the tensor product

$$\mathcal{F} \otimes \mathcal{G} : \dots \to \bigoplus_{i+j=k} F_i \otimes G_j \xrightarrow{d_k} \bigoplus_{i+j=k+1} F_i \otimes G_j \to \dots,$$

the map $F_i \otimes G_j \to F_{i'} \otimes G_{j'}$ is
$$\begin{cases} \phi_i \otimes 1 & \text{if } i' = i+1; \\ (-1)^i 1 \otimes \psi_j & \text{if } j' = j+1; \\ 0 & \text{otherwise.} \end{cases}$$

dd = 0.)

where

Definition 2.20 (Shift). Given a complex

$$\mathcal{F}: \cdots \to F_i \xrightarrow{\phi_i} F_{i+1} \to \ldots;$$

Denote $\mathcal{F}[n]$ to be the complex obtained by shifting \mathcal{F} (to the left) n times. That is, $\mathcal{F}[n]_i = \mathcal{F}_{n+i}$, and the differential is multiplied by $(-1)^n$. Denote R[n] to be the simple complex whose n-th position is R. Note that $\mathcal{F}[n] = R[n] \otimes \mathcal{F}$.

Definition 2.21 (Mapping cone). For $y \in R$, consider $\mathcal{F} = K(y)$, that is,

$$\mathcal{F}: 0 \to R \xrightarrow{g} R \to 0.$$

Then there is a natural exact sequence of complexes

(

$$0 \to R[-1] \to \mathcal{F} \to R \to 0.$$

Tensoring a complex \mathcal{G} , this gives an exact sequence

 $0 \to \mathcal{G}[-1] \to \mathcal{F} \otimes \mathcal{G} \to \mathcal{G} \to 0.$

Here $\mathcal{F} \otimes \mathcal{G}$ is the mapping cone of the map $\mathcal{G} \xrightarrow{y} \mathcal{G}$, in fact, it is given by

From this exact sequence, we get a long exact sequence of homologies

$$\cdots \to H^{i-1}(\mathcal{G}) \xrightarrow{y} H^{i-1}(\mathcal{G}) \to H^i(\mathcal{F} \otimes \mathcal{G}) \to H^i(\mathcal{G}) \xrightarrow{y} \dots$$

Here note that $H^{i-1}(\mathcal{G}) = H^i(\mathcal{G}[-1]).$

Proposition 2.22. If $N = N' \oplus N''$, then $\bigwedge N = \bigwedge N' \otimes \bigwedge N''$. If $x' \in N$ and $x'' \in N''$, take $x = (x', x'') \in N$, then $K(x) = K(x') \otimes K(x'')$.

Proof. Note that here the (skew-commutative) algebra structure of $\bigwedge N'\otimes \bigwedge N''$ is given by

$$(a \otimes b) \wedge (a' \otimes b') = (-1)^{\deg a' \deg b} ((a \wedge a') \otimes (b \wedge b'))$$

for homogenous elements. This is just linear algebra. It suffices to check the differentials coincide, that is, for $y' \in \bigwedge N', y'' \in \bigwedge N'', x \land (y' \otimes y'') =$ $(x' \otimes 1 + 1 \otimes x'') \land (y' \otimes y'') = (x' \land y') \otimes y'' + (-1)^{\deg y'}y' \otimes (x'' \land y'').$

Corollary 2.23. If y_1, \ldots, y_r are elements in (x_1, \ldots, x_n) and M is an R-module, then

$$H^*(M \otimes K(x_1, \dots, x_n, y_1, \dots, y_r)) \simeq H^*(M \otimes K(x_1, \dots, x_n)) \otimes \bigwedge R^r$$

as graded modules, which means that

$$H^{i}(M \otimes K(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{r})) \simeq \bigoplus_{j+k=i} H^{j}(M \otimes K(x_{1}, \ldots, x_{n})) \otimes \bigwedge^{k} R^{r}.$$

So $H^i(M \otimes K(x_1, \ldots, x_n, y_1, \ldots, y_r)) = 0$ iff $H^j(M \otimes K(x_1, \ldots, x_n)) = 0$ for any $i - r \leq j \leq i$.

Proof. As y_1, \ldots, y_r are elements in (x_1, \ldots, x_n) , there is an isomorphism $R^n \oplus R^r \simeq R^n \oplus R^r$

sending $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ to $(x_1, \ldots, x_n, 0, \ldots, 0)$. So by functoriality of Koszul complex,

$$K(x_1, \dots, x_n, y_1, \dots, y_r) \simeq K(x_1, \dots, x_n, 0, \dots, 0)$$
$$\simeq K(x_1, \dots, x_n) \otimes K(0, \dots, 0)$$

Here

$$K(0,\ldots,0): 0 \to R \xrightarrow{0} \bigwedge^2 R^r \xrightarrow{0} \ldots \xrightarrow{0} \bigwedge^r R^r \to 0.$$

Corollary 2.24. If $x = (x', y) \in N = N' \oplus R$, then K(x) is isomorphic to the mapping cone of $K(x') \xrightarrow{y} K(x')$. In particular, we have a long exact sequence

$$\cdots \to H^{i}(M \otimes K(x')) \xrightarrow{y} H^{i}(M \otimes K(x')) \to H^{i+1}(M \otimes K(x)) \to$$
$$\to H^{i+1}(M \otimes K(x')) \xrightarrow{y} H^{i+1}(M \otimes K(x')) \to \dots$$

Proof. Note that $N' \oplus R \simeq R \oplus N'$. Hence $K(x) \simeq K(y, x') = K(y) \otimes K(x')$. This gives a short exact sequence

$$0 \to K(x')[-1] \to K(x) \to K(x') \to 0.$$

Tensoring with M, we get

$$0 \to M \otimes K(x')[-1] \to M \otimes K(x) \to M \otimes K(x') \to 0.$$

(Why exact?).

2.5. **Proof of the main theorems.** The following is a more precise version.

Corollary 2.25. If x_1, \ldots, x_i is an *M*-sequence, then

$$H^{i}(M \otimes K(x_{1}, \dots, x_{n})) = ((x_{1}, \dots, x_{i})M : (x_{1}, \dots, x_{n}))/(x_{1}, \dots, x_{i})M.$$

In particular, in this case, $H^j(M \otimes K(x_1, \ldots, x_n)) = 0$ for j < i. If $IM \neq M$ $(I = (x_1, \ldots, x_n))$ and x_1, \ldots, x_i is a maximal M-sequence, then $H^i(M \otimes K(x_1, \ldots, x_n)) \neq 0$.

Proof. We do induction on i. If i = 0 this is trivial. If i > 0, then we do induction on n. If n = i, this follows easily by Example 2.14. If n > i, then by Corollary 2.24, there is an exact sequence

$$H^{i-1}(M \otimes K(x_1, \dots, x_{n-1})) \to H^i(M \otimes K(x_1, \dots, x_n)) \to$$

$$\to H^i(M \otimes K(x_1, \dots, x_{n-1})) \xrightarrow{x_n} H^i(M \otimes K(x_1, \dots, x_{n-1}))$$

Here by induction,

$$H^{i-1}(M \otimes K(x_1, \dots, x_{n-1})) = ((x_1, \dots, x_{i-1})M : (x_1, \dots, x_{n-1}))/(x_1, \dots, x_{i-1})M = 0$$

as x_i is not a zeo-divisor of $M/(x_1, \ldots, x_{i-1})M$ (this also proves the second statement). Hence $H^i(M \otimes K(x_1, \ldots, x_n))$ is just the kernel of

$$H^{i}(M \otimes K(x_{1}, \ldots, x_{n-1})) \xrightarrow{x_{n}} H^{i}(M \otimes K(x_{1}, \ldots, x_{n-1})).$$

By induction,

$$H^{i}(M \otimes K(x_{1}, \dots, x_{n-1})) = ((x_{1}, \dots, x_{i})M : (x_{1}, \dots, x_{n-1}))/(x_{1}, \dots, x_{i})M,$$

so it easy to compute the kernel.

To show the last statement, note that I is contained in the set of zerodivisors on $M/(x_1, \ldots, x_i)M$, so I is contained in the union of associated primes and hence $I \subset \operatorname{ann}(x)$ for some non-zero $x \in M/(x_1, \ldots, x_i)M$ by Corollary 1.12. This implies that $((x_1, \ldots, x_i)M : I)/(x_1, \ldots, x_i)M \neq 0$. \Box

Proof of Theorem 2.15. Let y_1, \ldots, y_s be a maximal *M*-sequence and *r* be the minimal such that

$$H^r(M \otimes K(x_1, \ldots, x_n)) \neq 0.$$

The goal is to show that r = s.

By Corollary 2.23, r is the minimal such that

$$H^r(M \otimes K(x_1, \ldots, x_n, y_1, \ldots, y_s)) \neq 0.$$

If $IM \neq M$, then by Corollary 2.25, r = s. So it suffices to show that $IM \neq M$. This follows from Lemma 2.26(2) and the nonvanishing of homologies.

Lemma 2.26. (1) If $y \in (x_1, ..., x_n)$, then $H^j(M \otimes K(x_1, ..., x_n))$ is annihilated by y for any M and any j.

(2) If $(x_1, ..., x_n)M = M$, then $H^j(M \otimes K(x_1, ..., x_n)) = 0$ for any j.

Proof. (1) Here we give a different proof from the book (which uses dual Koszul complex). Note that by Corollary 2.24, there is a long exact sequence

$$H^{j}(M \otimes K(x_{1}, \dots, x_{n}, y)) \to H^{j}(M \otimes K(x_{1}, \dots, x_{n})) \xrightarrow{y} H^{j}(M \otimes K(x_{1}, \dots, x_{n})).$$

So the statement is equivalent to that the first arrow is surjective. By the proof of Corollary 2.23, this arrow splits.

(2) Replacing R by $R/\operatorname{ann}(M)$ will not change $M \otimes K(x_1, \ldots, x_n)$, so we may assume that $\operatorname{ann}(M) = 0$. By $(x_1, \ldots, x_n)M = M$ and Lemma 1.2, there is $y \in (x_1, \ldots, x_n)$ such that (1 - y)M = 0, which implies that $y = 1 \in (x_1, \ldots, x_n)$. Then apply (1).

Proof of Theorem 2.17. We prove the first statement by induction on n. Suppose $H^k(M \otimes K(x_1, \ldots, x_n)) = 0$, then by Corollary 2.24,

$$H^{k-1}(M \otimes K(x_1, \dots, x_{n-1})) \xrightarrow{x_n} H^{k-1}(M \otimes K(x_1, \dots, x_{n-1}))$$

is surjective. Then by Nakayama's lemma, $H^{k-1}(M \otimes K(x_1, \ldots, x_{n-1})) = 0$. By induction, $H^j(M \otimes K(x_1, \ldots, x_{n-1})) = 0$ for $j \leq k-1$. By the long exact sequence in Corollary 2.24, $H^j(M \otimes K(x_1, \ldots, x_n)) = 0$ for $j \leq k-1$.

We prove the second statement by induction on n. Suppose $H^{n-1}(M \otimes K(x_1, \ldots, x_n)) = 0$, then as above, $H^{n-2}(M \otimes K(x_1, \ldots, x_{n-1})) = 0$, which implies that x_1, \ldots, x_{n-1} is an M-sequence by induction. Then by Corollary 2.25,

$$0 = H^{n-1}(M \otimes K(x_1, \dots, x_n)) = ((x_1, \dots, x_{n-1})M : (x_1, \dots, x_n))/(x_1, \dots, x_{n-1})M$$

which implies that x_n is not a zero-divisor of $M/(x_1, \ldots, x_{n-1})M$.

3. Dimensions and depths

In this section we introduce fundamental theory on dimension and depth, which are basic invariants measuring size of a ring or an ideal. 3.1. **Dimension theory.** Recall that the *length* of a chain $P_r \supset P_{r-1} \supset \cdots \supset P_0$ is r.

Definition 3.1. (1) The *(Krull) dimension* dim R of a ring R is defined to be the supremum of the lengths of chains of prime ideals in R.

(2) The dimension of an ideal I is dim $I = \dim R/I$.

(3) The codimension of an ideal I is codim $I = \min_{P \supset I} \dim_{R_P}$.

Remark 3.2. It is clear that $\dim I + \operatorname{codim} I \leq \dim R$. It is not always true that

$$\dim I + \operatorname{codim} I = \dim R.$$

For example, consider R = k[x, y, z]/(xy, xz) and I = (x - 1), then R corresponds to the union of a line (x = 0) and a plane (y = z = 0), and I corresponds to a point (1, 0, 0). In this case, dim R = 2, dim I = 0, codim I = 1. So we need to require some irreducibility for the equality to be true.

Theorem 3.3. Let R be a domain finitely generated over a field, then

(1)

 $\dim R = \operatorname{tr.deg}_k R = \operatorname{tr.deg}_k \operatorname{Frac}(R).$

(2) dim R equals to the length of any maximal chains of prime ideals.(3)

$$\dim I + \operatorname{codim} I = \dim R.$$

Idea of proof. The proof uses the Noether normalization theorem: if $P_r \supset P_{r-1} \supset \cdots \supset P_0$ a maximal chain (in the sense that one cannot interesest in any more primes), then there exists a subring $k[x_1, \ldots, x_r] \simeq S \subset R$ such that R is integral over S and $P_i \cap S = (x_1, \ldots, x_i)$.

This implies that

$$\dim R = r = \operatorname{tr.deg}_k S = \operatorname{tr.deg}_k R.$$

For $(2) \implies (3)$, we leave to exercise.

Theorem 3.4 (Equivalent definitions for dimension of a local ring). Let (R, \mathfrak{m}, k) be a local ring. Then dim R is equal to the following values:

- (1) The minimal number d such that there exists elements $f_1, \ldots, f_d \in \mathfrak{m}$ not contained in any other primes in R (such f_1, \ldots, f_d is called a system of parameters.);
- (2) dim R equals to the length of any maximal chains of prime ideals.
- (3) $1 + \deg(\dim_k(\mathfrak{m}^n/\mathfrak{m}^{n+1}))$, here $\dim_k(\mathfrak{m}^n/\mathfrak{m}^{n+1})$ coincides with a polynomial in n if n >> 0.

3.2. Hilbert fuctions/polynomials. Here we explain more about the Hilbert function/polynomial. Consider the polynomial ring $S = k[x_1, \ldots, x_n]$ and a finitely generated graded S-module $M = \bigoplus_{i \in \mathbb{Z}} M_i$ (Recall that "graded" means that $fM_i \subset M_{i+d}$ if f is homogenous of degree d). Then we can consider the Hilbert function $H_M(d) = \dim_k M_d$ (Why finite?).

Lemma 3.5. There exists d_0 such that $H_M(d)$ is a polynomial in d if $d \ge d_0$.

Proof. We do induction on n. If n = 0 this is trivial $(H_M(d) = 0 \text{ if } d >> 0)$. If n > 0, then consider the multiplication map

$$0 \to K_d \to M_d \xrightarrow{x_n} M_{d+1} \to C_d \to 0$$

Then $K = \bigoplus_{i \in \mathbb{Z}} K_i$ and $C = \bigoplus_{i \in \mathbb{Z}} C_i$ are finitely generated graded *S*-modules. As the multiplications of x_n on K, C are 0, K, C are actually finitely generated graded $S/(x_n)$ -modules. By dimension computing, we have

$$H_M(d+1) - H_M(d) = H_C(d) - H_K(d).$$

RHS is a polynomial for $d \ge d_0$ by induction hypothesis. So $H_M(d)$ is a polynomial for $d \ge d_0$.

To conclude that $\dim_k(\mathfrak{m}^n/\mathfrak{m}^{n+1})$ coincides with a polynomial in n if $n \gg 0$, we apply this lemma to $M = \bigoplus_{i>0} \mathfrak{m}^i/\mathfrak{m}^{i+1}$.

3.3. Regular local rings. We first give some useful corollaries.

Corollary 3.6. Let (R, \mathfrak{m}, k) be a local ring. Then dim $R \leq \dim_k \mathfrak{m}/\mathfrak{m}^2$.

Proof. By Nakayama's lemma, $\dim_k \mathfrak{m}/\mathfrak{m}^2$ is the number of a minimal set of generators of \mathfrak{m} .

Corollary 3.7. Let R be ring and $I = (x_1, \ldots, x_r) \neq R$. If P is minimal among all primes containing I, then $\operatorname{codim} P \leq r$. In particular, $\operatorname{codim} I \leq r$.

Proof. Apply Theorem 3.4 to R_P .

Corollary 3.8. Let (R, \mathfrak{m}) be a local ring and $x \in \mathfrak{m}$ not a zero-divisor. Then $\operatorname{codim}(x) = 1$ and $\dim R/(x) = \dim R - 1$.

Proof. By Corollary 3.7, $\operatorname{codim}(x) \leq 1$. If $\operatorname{codim}(x) = 0$, then (x) is contained in a minimal prime, which implies that x is a zero-divisor (Remark 1.11), a contradiction.

By definition, $d = \dim R/(x) \leq \dim R - \operatorname{codim}(x) = \dim R - 1$. On the other hand, if $\bar{x}_1, \ldots, \bar{x}_d$ is a system of parameters of $\dim R/(x)$, then $(x, x_1, \ldots, x_r) \subset \mathfrak{m}$ is not contained in other primes, so $\dim R \leq d+1$. \Box

Definition 3.9. A local ring (R, \mathfrak{m}, k) is regular if dim $R = \dim_k \mathfrak{m}/\mathfrak{m}^2$, or equivalently, \mathfrak{m} is generated by $d = \dim R$ elements f_1, \ldots, f_d (called a regular system of parameters). A ring is regular if its localization at every prime is regular.

Example 3.10. $k[x_1, \ldots, x_n]$ is regular, $k[x, y]/(x^2 - y^3)$ is not regular.

The following tells that a regular system is actually a regular sequence.

Corollary 3.11. Let (R, \mathfrak{m}, k) be a regular local ring and f_1, \ldots, f_d a regular system of parameters, then f_1, \ldots, f_d is a regular sequence.

Proof. We prove by induction on i that (1) $R/(f_1, \ldots, f_i)$ is a regular local ring and dim $R/(f_1, \ldots, f_i) = d - i$, (2) f_{i+1} is not a zero-divisor on $R/(f_1, \ldots, f_i)$.

Note that (1) holds for i = 0 By the next corollary, a regular local ring is a domain, so if (1) holds for i, then (2) holds for i.

Finally, if (2) holds for i, then (1) holds for i + 1 by Corollary 3.8, as $\dim R/(f_1, \ldots, f_{i+1}) = \dim R/(f_1, \ldots, f_i) - 1 = d - i - 1$ and its maximal ideal is generated by d - i - 1 elements.

Corollary 3.12. Let (R, \mathfrak{m}, k) be a regular local ring. Then R is a domain.

Proof. We do induction on $d = \dim R$. If d = 0, then $\mathfrak{m} = 0$ and R is a field. If d > 0, then $\mathfrak{m} \neq \mathfrak{m}^2$ and \mathfrak{m} is not minimal. So we can find $x \in \mathfrak{m}$ not in \mathfrak{m}^2 and not in any minimal primes of R (Why?). Consider S = R/(x). Then dim $S < \dim R$ and dim $S \ge \dim R - 1$, so dim $S = \dim R - 1$. Take $\mathfrak{n} = \mathfrak{m} \cap S$. Note that $\mathfrak{n}/\mathfrak{n}^2 = \mathfrak{m}/(\mathfrak{m}^2 + (x)) \subset \mathfrak{m}/\mathfrak{m}^2$ is a proper subspace, it can be generated by d - 1 element, so S is regular of dimension d - 1. By induction hypothesis, S is a domain. So (x) is prime. There exists a minimal prime $Q \subsetneq (x)$. For any $y \in Q$, y = ax and $x \notin Q$, so $a \in Q$. This implies that Q = xQ, so Q = 0 by Nakayama's lemma.

3.4. Depth versus codimension, Cohen–Macaulay rings.

Proposition 3.13. Let R be a ring and I an ideal. Then depth $(I, R) \leq \operatorname{codim} I$.

The geometric meaning of this proposition is easy to understand: if V(I) is contained in r hypersurfaces intersecting "properly", then its codimension is at most r.

Proof. Let x_1, \ldots, x_r be a maximal regular sequence in I. Since x_1 is a nonzero-divisor, x_1 is not contained in any minimal primes, so $\operatorname{codim} I/(x_1) \leq \operatorname{codim} I - 1$. By induction, $\operatorname{codim} I/(x_1) \geq \operatorname{depth}(I/(x_1), R/(x_1)) = n - 1$.

So it is interesting to investigate the equality case.

Definition 3.14. R is a Cohen-Macaulay ring if depth(I, R) = codim I for every proper ideal I.

Theorem 3.15. R is Cohen–Macaulay iff depth $(P, R) = \operatorname{codim} P$ for every maximal ideal P.

Proof. It suffices to show that if depth $(P, R) = \operatorname{codim} P$ for every maximal ideal P, then depth $(I, R) \ge \operatorname{codim} I$.

We first show that depth(I, R) can be localized, that is, there exists a maximal ideal P such that depth $(I, R) = depth(I_P, R_P)$. Using the Koszul complex (Theorem 2.15), depth(I, R) is the minimal integer r such that $H^r(K(x_1, \ldots, x_n)) \neq 0$, where $I = (x_1, \ldots, x_n)$, so there exists a maximal ideal P such that $H^r(K(x_1, \ldots, x_n))_P \neq 0$, which implies that depth $(I, R) = depth(I_P, R_P)$.

So after localization, we may assume that (R, P) is a local ring.

If P is the only prime containing I, then $\operatorname{codim} P = \operatorname{codim} I$ by definition. We claim that depth $P = \operatorname{depth} I$. It suffices to show that depth $P \leq \operatorname{depth} I$. As R/I is a local ring which has only one prime P, it can be shown that $P^k \subset I$ for some integer k (consider the radical of 0). Let x_1, \ldots, x_r be a maximal regular sequence in P, then $x_1^k, \ldots, x_r^k \in I$, which is also a regular sequence (see Exercise). So depth $P \leq \operatorname{depth} I$.

Suppose that P is the only prime containing I. By the Noetherian induction, we may assume that I is maximal among those satisfying depth $(I, R) < \operatorname{codim} I$. We can take an element $x \in P$ but not in any minimal primes containing I, then depth $(I + (x), R) = \operatorname{codim}(I + (x)) \ge \operatorname{codim} I + 1$. So we finish the proof by showing $r = \operatorname{depth}(I + (x), R) \le \operatorname{depth}(I, R) + 1$. Suppose $I = (x_1, \ldots, x_n)$ and $I + (x) = (x_1, \ldots, x_n, x)$. By the Koszul complex (Theorem 2.15), $H^j(K(x_1, \ldots, x_n, x)) = 0$ for j < r, which implies that $H^j(K(x_1, \ldots, x_n)) = 0$ for j < r - 1 by Corollary 2.24 and Nakayama's lemma, so depth $(I, R) \ge r - 1$.

Finally we prove a property of CM ring.

Theorem 3.16 (Exercise). Let (R, \mathfrak{m}) be a local ring and $x \in \mathfrak{m}$ is not a zero-divisor. Then R is CM iff R/(x) is CM.

References

[1] Atiyah, MacDonald, Introduction to commutative algebra.

[2] Eisenbud, Commutative algebra with a view toward algebraic geometry.

Shanghai Center for Mathematical Sciences, Fudan University, Jiangwan Campus, 2005 Songhu Road, Shanghai, 200438, China

 $E\text{-}mail\ address:\ \texttt{chenjiang@fudan.edu.cn}$