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1. INTRODUCTION

In this lecture, we consider a (Noetherian) commutative ring R with iden-
tity element.

I will assume that students know about basic definitions and properties
of rings, ideals, modules, morphisms (e.g. Chapter 1-3 of [1]). Our main
textbook is [2]. We will cover selected topics in order to serve the lecture of
geometry of syzygies ([2, Section 17-19]).

1.1. Nakayama’s lemma. The Jacobson radical J(R) of R is the intersec-
tion of all maximal ideals. Note that y € J(R) iff 1 — zy is a unit in R for
every r € R.

Theorem 1.1 (Nakayama’s lemma). Let I be an ideal contained in the
Jacobson radical of R, and M a finitely generated R-module. If IM = M,
then M = 0.

Lemma 1.2. Let I be an R-ideal and M a finitely generated R-module. If
IM = M, then there exists y € I such that (1 —y)M = 0.
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Proof. This is a consequence of the Caylay—-Hamilton theorem. Consider
mi,..., My a set of generators in M, then there exists an n X n matrix
A with coefficients in I such that (mg,...,my,)T = A(mq,...,my)". Set
m = (my,...,my)T. Hence (I, — A)m = 0. Note that adj(I,, — A) (I, — A) =
det(I, — A)I,, we know that det(I, — A)m = 0, that is, det(l, — A)m; =0
for all 4. This implies that det(Z,, — A)M = 0. O

Example 1.3. If we do not assume that M is finitely generated, this is not
true. For example, consider R = k[[z]], M = k[[x,z~!]].

Corollary 1.4. Let I be an ideal contained in the Jacobson radical of R,
and M a finitely generated R-module. If N+ IM = M for some submodule
N C M, then M = N.

Proof. Apply Nakayama’s lemma to M/N. O

Corollary 1.5. Let (R,m) be a local ring and M a finitely generated R-
module. Consider my,...,my, € M. If my,...,my, € M/mM is a basis (as
a R/m-vector space), then mq, ..., m, generates M (which is also a minimal
set of generators.)

Proof. Apply Corollary 1.4 to N the submodule generated by myq, ..., my,.
O

1.2. Noetherian rings.

Definition 1.6 (Noetherian ring). A ring R is Noetherian if one of the
following equivalent conditions holds:

(1) Every non-empty set of ideals has a maximal element;
(2) The set of ideals satisfies the ascending chain condition (ACC);
(3) Every ideal is finitely generated.

In this lecture, we assume all rings are Noetherian and all modules are
finitely generated for simplicity.

Theorem 1.7 (Hilbert basis theorem). If R is Noetherian, then R[z| is
Noetherian.

Idea of proof. Consider I C R[x] an ideal. Consider J C R the leading
coefficients of I, then J is finitely generated. We may assume that J is
generated by the leading coefficients of fi,..., f, € R[z]. Take I’ be the
ideal generated by fi,..., fn, then it is easy to see that any f € I can be
written as f = f' 4+ g with f' € I’ and deg g < max;{deg f;} =r. So

I=IN(R®Rx®---®R" 1)+ TI

is finitely generated. (Check that I N (R @ Rx @ --- @ Ra""!) is finitely
generated!) O

Example 1.8. Any quotient of polynomial ring k[z1,...,x,]/I is Noether-
ian.
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1.3. Associated primes. We will use the notion (A : B) to define the set
{a | aB C A} whenever it makes sense. For example, if N,N' C M are
R-modules and I an ideal, then we can define (N : I) as a submodule of M,
and (N’ : N) an ideal. Usually the set (0 : N) is denoted by ann(N) and
called the annihilator of N, that is, the set of elements whose multiplication
action kills V.

Definition 1.9 (Associated prime). A prime P of R is associated to M if
P = ann(z) for some x € M.

Associated primes are important in the primary decomposition. But here
we mainly focus on its relation with zero-divisors.

Theorem 1.10. Let R be a Noetherian ring and M a finitely generated
R-module. Then the union of associated primes to M consists of zero and
zero-divisors. Moreover, there are only finitely many associated primes.

Proof. We want to show that

U ann(z) = U ann(z).

ann(z):prime z#0

So it suffices to show that if ann(y) is maximal among all ann(z), then ann(y)
is prime. Consider rs € ann(y) such that s ¢ ann(y), then rsy = 0 but
sy # 0. We know that ann(y) C ann(sy), so equality holds by maximality.
This implies that r € ann(y).

To prove the finiteness, we only outline the idea here. Denote Ass(M) the
set of associated primes. Then it is not hard to see that for a short exact
sequence

0—->M - M—M"—0,
we have
Ass(M") € Ass(M) C Ass(M') U Ass(M").
So inductively we get the finiteness. O

Remark 1.11. Another fact is that if P is a prime minimal among all primes
containing ann(M), then P is an associated prime.

Corollary 1.12. Let R be a Noetherian ring and M a finitely generated
R-module. Let I be an ideal. Then either I contains a non zero-divisor on
M, or I annihilated a non-zero element of M.

Proof. Suppose that I contains only zero-divisors on M, then by Theo-
rem 1.10, I C U,nn(z):prime @00 (2). So the conclusion follows from the fol-
lowing easy lemma. U

Lemma 1.13. Let I be an ideal and let Py,..., P, be primes of R. If
I Cc\J; P, then I C P; for some i.

1.4. Tensor products and Tor. Let M, N be R-modules, the tensor prod-
uct M ® N is defined by the module generated by

{m®n|meMne N},
modulo relations

(m+m)@n=men+m @mn;
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men+n)=men+men
(rm)@n=m® (rn) =r(men)

for m € M,n € N,r € R. It can be characterized by the universal property
that if f: M x N — P is an R-bilinear map, then there exists a unique
g: M ® N — P such that f factors through g.

Example 1.14. (1) M@R~M, M ®R"~ M",
(2) M®R/I ~ M/IM,
(3) (M@RN)pEMP(@RP Np.

Proposition 1.15. (— ® N) is a right-ezact functor. If
ML S Mo
is a exact sequence of R-modules, then

MoN S MeaN 2S5 M o N 0

15 exact.

Definition 1.16 (Flat module). N is flat if (— ® N) is an exact functor,
that is, if
0->M —>M-—>M =0

is a exact sequence of R-modules, then
0->M&N-—->MN-—->M'&N—0
is exact.
To study flatness, we need to introduce Tor from homological algebra.

Definition 1.17 (Projective module). An R-module M is projective if for
any surjective map f : Ny — No and any map g : M — Ns, there exists
h: M — Nj such that foh =g.

Example 1.18. Free modules are flat and projective.

Definition 1.19 (Complexes and homologies). A complez of R-modules is
a sequence of R-modules with (differential) homomorphisms
04 i
F "'—>F7;+1 —+1>FZL>FZ_1 — ...

such that 0;0,41 = 0 for each i. Denote the homology to be H;(F) =
ker(d;)/im(d;+1). We say that F is ezact at degree i if H;(F) = 0. A
morphism of complexes ¢ : F — G is given by ¢; : F; — G; commuting with
differentials, that is, we have a commutative diagram

F . Fitq F; Fi 4
\L¢i+l l@' l¢i1
G: . Git1 G; Gi—1

This naturally gives morphisms between homologies ¢; : H;(F) — H;(G).
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Definition 1.20 (Projective resolution). A projective resolution of an R-
module M is a complex of projective modules

Fioi s By s BN R

which is exact and coker(¢;) = M. Sometimes we also denote it by

Fioo s Fy oo B 25 Fy(— M = 0).
Definition 1.21 (Left derived functor). Let T' be a right-exact functor.
Given a projective resolution of an R-module M:

Fioi s By B 25 Fy(— M = 0).

Define the left derived functor by L;T(M) := H;(TJF), which is just the
homology of

TF: - = T(F,) — = T(F) = T(F)(—T(M)—0).
We collect basic properties of derived functors here.

Proposition 1.22. (1) LoT (M) =T(M);
(2) L;T(M) is independent of the choice of projective resolution;
(3) If M is projective, then L;T(M) =0 fori > 0.
(4) For a short exact sequence of R-modules

0>A—-B—->C=—=0,

we have a long exact sequence

T(A) —

Definition 1.23 (Tor). For an R-module N, Torf(—, N) is defined by
L;T(—) where T'= (— ® N).

T(B )—>T(C)—>().

Remark 1.24. So to compute Tor (M, N), we should pick a projective res-
olution F of M and compute H; (]—" ® N). Note that tensor products are
symmetmc that is, M @ N ~ N ® M, it can be seen that Tor!*(M, N) ~
Tor®(N, M), and Tor?(M, N) can be also computed by pick a projective
resolutlon G of N and compute H;(M ® G).

Theorem 1.25. TFAE:

(1) N is flat;

(2) Torf(M,N) =0 for all i > 0 and all M;
(3) Torft (M N) =0 for all M.

Proof. (1) = (
compute H;(F @ N
for all « > 0.

(2) = (3): trivial.

2): take a projective resolution F of M, we need to
). As N is flat, F ® N is exact, hence Tor?(M,N) =0
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(3) = (1): this follows from the long exact sequence

Torf(M" N) = M@ N - M@ N — M" @ N — 0.

2. KOSZUL COMPLEXES AND REGULAR SEQUENCES

2.1. Regular sequences.

Definition 2.1 (Regular sequence). Let R be a ring and M an R-module.
A sequence of elements z1,...,x, € R is called a regular sequence on M (or
M -sequence) if

(1) (21, 2n) M #£ M;

(2) For each 1 <i <mn, z; is not a zero-divisor on M/(x1,...,z;—1)M.

Definition 2.2 (Depth). Let R be a ring, I an ideal, and M an R-module.
Suppose IM # M. The depth of I on M, depth(I, M), is defined by the
maximal length of M-sequences in I.

Remark 2.3. (1) If M = R, then simply denote depth I := depth(/, M).
(2) We will see soon (Theorem 2.15) that any maximal M-sequence has
the same length.

Example 2.4. If R = k[z1,...,xy,], then z1,...,x, is a regular sequence.
We will see soon that depth(zy,...,z,) = n.

Remark 2.5. The depth measures the size of an ideal, and an element in the
regular sequence corresponds to a hypersurface in geometry. So a regular
sequence in I corresponds to a set of hypersurface containing V' (I) intersect-
ing each other “properly”. Consider for example R = k[x, y] or k[z,y]/(zy),

I=(x,y).
2.2. Koszul complexes.

Definition 2.6 (Complexes and homologies). A complex of R-modules is a
sequence of R-modules with homomorphisms

05— &
]:—>M171—1>M2—1>MZ+1—>

such that §;0;_1 = 0 for each i. Denote the (co)homology to be H'(F) =
ker(dz)/lm(&_l)

We will introduce Koszul complexes and explain how regular sequences
are related to Koszul complexes.

Example 2.7 (Koszul complex of length 1). Given z € R. The Koszul
complex of length 1 is given by

K(z):0R5 R—0.

Note that HO( (z)) = (0:2), HY(K(z)) = R/xR. Then x is an R-sequence
if (1) H' (K (x)) # 0; (2) H(K(x)) = 0.
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Example 2.8 (Koszul complex of length 2). Given x,y € R. The Koszul
complex of length 2 is given by

Y

x

K(z,9):0 = R R?? ) R 0.

Note that HY(K(z,y)) = (0 : (z,y)). H*(K(x,y)) = R/(z,y)R. We can
compute H'(K (z,y)) (Exercise). It turns out that if  is not a zero-divisor
in R, then H'(K(z,y)) ~ (x : y)/(z). So H'(K(z,y)) = 0 if and only if
y is not a zero-divisor of R/(z). In conclusion, z,y is an R-sequence if (1)
H2(K(2,y)) # 05 (2) H(K(2,y)) = H'(K(z,y)) = 0.

Theorem 2.9. Let (R,m) be a local ring and x,y € m. Then x,y is a reqular
sequence iff H (K (x,y)) = 0. In particular, x,vy is a reqular sequence iff y, x
is a reqular sequence.

Proof. This is not a direct consequence of the above argument, as we need
to show that z is a non-zero-divisor (equivalent to H°(K(z)) = 0). Write
K (z,y) as the following:

0 R—2sR 0
\i@ Y
0 R—-R 0.

Then this gives a short exact sequence of complexes

T

K(x)[-1]: 0 R——R 0.
k)

K(z,y):0 R R? R 0
s

K(z):0 R—>R 0

That is,
0— K(x)[-1] —» K(z,y) » K(x) — 0.
Then this induces a long exact sequences of homologies
H(K(x)) = H(K(z)) = H'(K(z,y)) = H'(K(x)).
So HY'(K(z,y)) = 0 implies that yH"(K(x)) = H°(K(z)), which means
that HY(K(x)) = 0 by Nakayama’s lemma. O

Corollary 2.10. Let (R,m) be a local ring and x1,...,x, € m. Suppose
that x1, ...,y S a regular sequence, then any permutation of x1,...,Ty S
again a reqular sequence. (Ezercise.)

We will define Koszul complexes and show this correspondence in general.

Definition 2.11 (Exterior algebra). Let N be an R-module. Denote the
tensor algebra

T(Ny=R&N®(NQN)®...
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The exterior algebra AN = &, A" N is defined by T'(N) modulo the rela-
tions x ® z (and hence r®y+y®x) for x,y € N. The product of a,b € AN
is written as a A b.

Definition 2.12 (Koszul complex). Let N be an R-module, x € N. Define
the Koszul complex to be

2 7 i+1
K(a;):O—>R—>N—>/\N—>~-—>/\Nd—””> NS

where d, sends a to x Aa. If N ~ R" is a free module of rank n (we always
consider this situation) and = = (x1,...,z,) € R", then we denote K(z) by
K(xi,...,xp).

Remark 2.13. (1) The R — N maps 1 to z.
(2) Consider N = R? (with basis e1, e3) and & = (1, x2), then A’N ~ R
(with bases e; A e2), and the map N — A?N is given by e; ~—
(r1e1 + woea) Aep = —xgeq A ey and eg — x1e1 A eg. In other words,

(2) (—332 361)

K(xl,xg):0—>R R€B2
Example 2.14. H"(K(z1,...,25)) = R/(x1,...,zy). Consider the corre-
sponding complex

R — 0.

/\"_1N L NN = /\"“N —0

Denote eq, ..., e, to be a basis of N ~ R™, then the basis of A"N is just
e1A---Aey, and the basis of/\nle iseg A NéN-Nep (1<i<n). dy
maps e; A---AéA---Aep to (1) twey Ao Aep. Soimd, = (21,...,2,)
and H"(K(x1,...,zy)) = R/(z1,...,2n).

2.3. Koszul complexes versus regular sequences. Now we can state
the main theorem of this section.

Theorem 2.15. Let M be a finitely generated R-module. If
H/ (M @ K(x1,...,2,)) =0

forj<rand H (M ® K(x1,...,2,)) # 0, then every mazimal M -sequence
inI = (x1,...,2,) C R has length r.

Idea of proof. Firstly, we consider the case that x1,...,zs is a maximal M-
sequence. In this case it is natural to prove this case by induction on n and
s.

In order to reduce the general case to this case, we consider yi,...,ys a
maximal M-sequence, and consider H/ (M @ K(y1,...,Ys, T1,---,Tn))-

So to deal with both cases, we need to investigate the relation between
K(y1,..-,Ys, T1,...,xy) and K(x1,...,z,) and the relation of their homolo-
gies. U

Corollary 2.16. Ifx1,. ..,y is an M-sequence, then H (MK (z1,...,1,)) =
0 for j <mn and H*"(M @ K(x1,...,2,)) = M/(x1,...,2,) M.
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Proof. By definition, depth(I, M) > n, so H (M ® K(z1,...,2,)) = 0 for
j < n. On the other hand,

H"(M ® K(21,. .., 2,)) = coker(M & /\"le Mo N\'N)
=M® coker(/\n_lN — /\nN)
=M®R/(x1,...,20) = M/(z1,...,2,) M.
Here we use the fact that M ® — is right-exact. O
Theorem 2.15 can be strengthen for local rings.

Theorem 2.17. Let (R,m) be a local ring, x1,...,2, € m. Let M be a
finitely generated R-module. If HY(M @ K(x1,...,2,)) = 0 for some k,
then H'(M ® K(x1,...,2,)) = 0 for all j < r. Moreover, if H* }(M ®

K(xi,...,2yn)) =0, then x1,...,xy, is an M -sequence.
Corollary 2.18. If R is local and (x1,...,x,) is a proper ideal containing
an M-sequence of length n, then x1,...,xy, is an M-sequence.

Proof. H"(M ® K(z1,...,2y)) = M/(x1,...,2,)M # 0 by Nakayama’s
lemma. Take r minimal such that H"(M ® K(x1,...,x,)) # 0, then every
maximal M-sequence in (x1,...,2;,) has length r, which implies that r > n.
So H"" Y (M ® K(x1,...,2,)) =0 and 1, ...,7, is an M-sequence. O

2.4. Operations on Koszul complexes.

Definition 2.19 (Tensor product of two complexes). Given two complexes

Fioo o BB
G:o G s Gyt — .

define the tensor product

FoG:—» P FRec; " P FeG —..,

it+j=k itj=k+1
¢ @1 ifi =i+1;
where the map F; ® G; — Fy @ Gjris § (—1)'1®@¢; if 7/ = j +1; (Check
0 otherwise.

dd =0.)
Definition 2.20 (Shift). Given a complex
Fioo B2 B

Denote F[n] to be the complex obtained by shifting F (to the left) n times.
That is, F[n]; = Fnti, and the differential is multiplied by (—1)". Denote
R[n] to be the simple complex whose n-th position is R. Note that F[n] =
R[n]® F.

Definition 2.21 (Mapping cone). For y € R, consider F = K (y), that is,
F:0-R-L R0
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Then there is a natural exact sequence of complexes
0— R[-1] - F—R—0.
Tensoring a complex G, this gives an exact sequence

0—-g[-1]—-F®G—G—0.
Here F ® G is the mapping cone of the map G 25 G, in fact, it is given by

—1)%p;
G Git1 Giyo —
\ @ \ o N o
Gi_1 G Gz‘+1 -

From this exact sequence, we get a long exact sequence of homologies

- HYG) L HTYG) - H(FoG) - H(G) L ...
Here note that H=1(G) = H(G[-1]).
Proposition 2.22. If N = N'& N”, then AN=AN @ AN". If2' € N
and " € N, take x = (2/,2") € N, then K(x) = K(2') ® K(x").
Proof. Note that here the (skew-commutative) algebra structure of A N’ ®
A\ N" is given by

(a@b) A (d @b) = (—1)289 (g Ad) @ (bAY))

for homogenous elements. This is just linear algebra. It suffices to check
the differentials coincide, that is, for y' € AN, y" e AN", 2 A (v @y") =
(x/ Q1+1® :E”) A (y/ ® y//) _ (x/ A y/) ® y// + (_1)degy’y/ ® (CE‘” A y//)‘ 0
Corollary 2.23. If y1,...,y, are elements in (x1,...,x,) and M is an
R-module, then

H* (M@ K(21, ..., 20,41, yp)  H (M @ K(21,...,2,)) ® [\ R
as graded modules, which means that

. . k
H(MK(x1,...,20,y1,- ) ~ @ H(MK(21,...,20))® [\ R

k=i
So H'(M @ K(z1,...,%n,y1,--,yr) = 0 iff H(M ® K(x1,...,2,)) = 0
foranyi—r <j<i.
Proof. As y1,...,y, are elements in (x1,...,x,), there is an isomorphism
RPeR ~R"®R"
sending (z1, ..., Tn,Y1y---,Yn) to (z1,...,2,,0,...,0). So by functoriality
of Koszul complex,
K(z1,...,¢n, Y1, Yyr) ~ K(z1,...,2,,0,...,0)
~ K(z1,...,2n) @ K(0,...,0).

Here )
T
K@©0,...,00:0RS AN RS .5 NR 0.
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Corollary 2.24. If z = (2/,y) € N = N' ® R, then K(x) is isomorphic to
the mapping cone of K(x') EN K(2'). In particular, we have a long exact
sequence

s H(Me K@) S H(Me K@) - HYY M @ K(z)) —
— HTY (M o K(2') L HYY (M o K(2')) — ..

Proof. Note that N'® R~ R®N'. Hence K(z) ~ K(y,2') = K(y) @ K(2').
This gives a short exact sequence

0— K(z')[-1] = K(x) = K(2') — 0.
Tensoring with M, we get
0> MeK(@)-1] > MeK(z) > MeK(') — 0.
(Why exact?). O
2.5. Proof of the main theorems. The following is a more precise ver-
sion.
Corollary 2.25. If x1,...,x; is an M-sequence, then
H(M @ K(z1,...,20)) = ((z1,..., )M : (x1,...,2,))/(x1, ..., 2;) M.

In particular, in this case, H (M ®K (x1,...,2,)) = 0 forj < i. IfIM # M
(I = (x1,...,2,)) and x1,...,2; is a mazimal M-sequence, then H'(M ®
K(xi,...,zy)) #0.

Proof. We do induction on ¢. If ¢ = 0 this is trivial. If ¢ > 0, then we do
induction on n. If n = i, this follows easily by Example 2.14. If n > 4, then
by Corollary 2.24, there is an exact sequence

H Y Mo K(21,...,00-1)) = H(M @ K(21,...,2,)) —
— H(MQ K(x1,...,20-1)) 2 H(M @ K(x1,...,%5_1))
Here by induction,
H Y MK (z1,...,2p-1)) = ((x1,. .., 2i1)M : (21,...,2p_1))/(x1,...,2i1)M =0

as x; is not a zeo-divisor of M/(z1,...,x;-1)M (this also proves the second
statement). Hence H*(M ® K (x1,...,2y)) is just the kernel of

H(M®K(x1,...,2n-1)) - H(M Q@ K(z1,...,20_1)).
By induction,
Hi(M®K(x1, coisp_1)) = (1, ..o x) M 2 (x4, ..y xpn—1))/ (21, ..., xi) M,

so it easy to compute the kernel.

To show the last statement, note that I is contained in the set of zero-
divisors on M/(z1,...,2;)M, so I is contained in the union of associated
primes and hence I C ann(z) for some non-zero x € M/(x1,...,z;)M by
Corollary 1.12. This implies that ((z1,...,2)M : I)/(z1,...,2;)M #0. O
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Proof of Theorem 2.15. Let y1,...,ys be a maximal M-sequence and r be
the minimal such that

H' (M ® K(z1,...,2,)) # 0.

The goal is to show that r = s.
By Corollary 2.23, r is the minimal such that

HT(M®K(x17---;xnay17"'7y8)) 7&0

If IM # M, then by Corollary 2.25, r = s. So it suffices to show that IM #
M. This follows from Lemma 2.26(2) and the nonvanishing of homologies.
O

Lemma 2.26. (1) Ify € (x1,...,2n), then H(M ® K(x1,...,2,)) is
annihilated by y for any M and any j.
(2) If (x1,...,2y)M = M, then H' (M ® K(x1,...,2,)) =0 for any j.

Proof. (1) Here we give a different proof from the book (which uses dual
Koszul complex). Note that by Corollary 2.24, there is a long exact sequence

H (MK (x1,...,20,y)) = H (MK (z1,...,1,)) L H (MK (z1,...,1,)).

So the statement is equivalent to that the first arrow is surjective. By the
proof of Corollary 2.23, this arrow splits.

(2) Replacing R by R/ann(M) will not change M @ K (x1,...,xy), so we
may assume that ann(M) = 0. By (z1,...,2,)M = M and Lemma 1.2,
there is y € (x1,...,2,) such that (1 — y)M = 0, which implies that y =
1€ (z1,...,25). Then apply (1). O

Proof of Theorem 2.17. We prove the first statement by induction on n.
Suppose H*(M ® K(x1,...,2,)) = 0, then by Corollary 2.24,

H"Y M @ K(z1,...,201)) 2% H"™ Y (M @ K(21,...,%0_1))

is surjective. Then by Nakayama’s lemma, H* "\ (M @ K (x1,...,2,_1)) = 0.
By induction, H/ (M @ K (x1,...,2,_1)) = 0 for j < k—1. By the long exact
sequence in Corollary 2.24, H/(M ® K (x1,...,7,)) =0 for j <k — 1.

We prove the second statement by induction on n. Suppose H" (M ®
K(w1,...,2,)) =0, then as above, H" (M ® K(z1,...,2,-1)) = 0, which
implies that xy,...,z,—1 is an M-sequence by induction. Then by Corol-
lary 2.25,

0=H"Y MK (z1,...,20)) = (@1, ..., Zn_1)M : (z1,...,22))/(®1,s ..., Tn1) M,

which implies that z,, is not a zero-divisor of M/(x1,...,x,—1)M. O

3. DIMENSIONS AND DEPTHS

In this section we introduce fundamental theory on dimension and depth,
which are basic invariants measuring size of a ring or an ideal.
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3.1. Dimension theory. Recall that the length of a chain P, D P._1 D
- D PFyisr.

Definition 3.1. (1) The (Krull) dimension dim R of a ring R is defined
to be the supremum of the lengths of chains of prime ideals in R.
(2) The dimension of an ideal [ is dim [ = dim R/I.
(3) The codimension of an ideal I is codim I = mingjme por dim Rp.

Remark 3.2. 1t is clear that dim I + codim I < dim R. It is not always true
that

dim I + codim I = dim R.

For example, consider R = k[z,y, z]/(zy,x2z) and I = (x — 1), then R
corresponds to the union of a line (z = 0) and a plane (y = z = 0), and
I corresponds to a point (1,0,0). In this case, dimR = 2, dimI = 0,
codim/ = 1. So we need to require some irreducibility for the equality to
be true.

Theorem 3.3. Let R be a domain finitely generated over a field, then

(1)
dim R = tr.deg;, R = tr.deg; Frac(R).

(2) dim R equals to the length of any mazimal chains of prime ideals.
(3)
dim I 4+ codim I = dim R.

Idea of proof. The proof uses the Noether normalization theorem: if P. D
P._1 D -+ D Py a maximal chain (in the sense that one cannot interesest
in any more primes), then there exists a subring k[x1,...,2,] ~ S C R such
that R is integral over S and P,N S = (x1,...,x;).

This implies that

dim R = r = tr.deg;, S = tr.deg, R.
For (2) = (3), we leave to exercise. O

Theorem 3.4 (Equivalent definitions for dimension of a local ring). Let
(R,m, k) be a local ring. Then dim R is equal to the following values:

(1) The minimal number d such that there ezists elements fi,...,fg €m
not contained in any other primes in R (such fi,..., fq is called a
system of parameters.);

(2) dim R equals to the length of any maximal chains of prime ideals.

(3) 1+deg(dimg(m™/m™ 1)), here dimy(m™/m™*1) coincides with a poly-
nomial in n if n >> 0.

3.2. Hilbert fuctions/polynomials. Here we explain more about the Hilbert

function/polynomial. Consider the polynomial ring S = k[zq,...,z,] and
a finitely generated graded S-module M = ,., M; (Recall that “graded”
means that fM; C M;, 4 if f is homogenous of degree d). Then we can
consider the Hilbert function Hys(d) = dimy, My (Why finite?).

Lemma 3.5. There exists dy such that Hyr(d) is a polynomial in d if d > dy.
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Proof. We do induction on n. If n = 0 this is trivial (Hp(d) = 0if d >> 0).
If n > 0, then consider the multiplication map

0— Kg— Mg =™ Mgy — Cy — 0.

Then K = @, Ki and C = @,., C; are finitely generated graded S-
modules. As the multiplications of z, on K,C" are 0, K,C are actually
finitely generated graded S/(z,)-modules. By dimension computing, we
have

Hy(d+1) — Hy(d) = He(d) — Hi(d).
RHS is a polynomial for d > dy by induction hypothesis. So Hjps(d) is a
polynomial for d > dj. O

To conclude that dimg(m”/m"*!) coincides with a polynomial in n if
n >> 0, we apply this lemma to M = @, m’/m* L.

3.3. Regular local rings. We first give some useful corollaries.
Corollary 3.6. Let (R,m, k) be a local ring. Then dim R < dimj, m/m?2.

Proof. By Nakayama’s lemma, dimj m/m? is the number of a minimal set
of generators of m. O

Corollary 3.7. Let R be ring and I = (z1,...,x,) # R. If P is minimal
among all primes containing I, then codim P < r. In particular, codim I <
r.

Proof. Apply Theorem 3.4 to Rp. O

Corollary 3.8. Let (R,m) be a local ring and x € m not a zero-divisor.
Then codim(z) = 1 and dim R/(x) = dim R — 1.

Proof. By Corollary 3.7, codim(z) < 1. If codim(z) = 0, then (x) is
contained in a minimal prime, which implies that x is a zero-divisor (Re-
mark 1.11), a contradiction.

By definition, d = dim R/(z) < dim R — codim(z) = dimR — 1. On
the other hand, if Z1,...,Z4 is a system of parameters of dim R/(x), then
(z,21,...,2,) C mis not contained in other primes, so dimR <d+1. O

Definition 3.9. A local ring (R, m, k) is regular if dim R = dim; m/m?
or equivalently, m is generated by d = dim R elements fi,..., fq (called a
reqular system of parameters). A ring is regular if its localization at every
prime is regular.

2

Example 3.10. k[z1,...,x,] is regular, k[z,y]/(z% — y3) is not regular.

The following tells that a regular system is actually a regular sequence.

Corollary 3.11. Let (R, m, k) be a regular local ring and f1, ..., fq a reqular
system of parameters, then fi,..., fq is a regular sequence.

Proof. We prove by induction on i that (1) R/(f1,..., fi) is a regular lo-
cal ring and dim R/(f1,...,fi) = d — i, (2) fi+1 is not a zero-divisor on
R/(f1,.. - fi)-

Note that (1) holds for i = 0 By the next corollary, a regular local ring is
a domain, so if (1) holds for 4, then (2) holds for i.
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Finally, if (2) holds for 4, then (1) holds for i + 1 by Corollary 3.8, as
dimR/(f1,..., fit1) = dim R/(f1,...,fi) =1 = d —i — 1 and its maximal
ideal is generated by d — i — 1 elements. U

Corollary 3.12. Let (R, m, k) be a regular local ring. Then R is a domain.

Proof. We do induction on d = dim R. If d = 0, then m = 0 and R is a field.
If d > 0, then m # m? and m is not minimal. So we can find 2 € m not
in m? and not in any minimal primes of R (Why?). Consider S = R/(z).
Then dim S < dim R and dimS > dim R — 1, so dim S = dim R — 1. Take
n=mnNS. Note that n/n?> = m/(m? + (z)) C m/m? is a proper subspace,
it can be generated by d — 1 element, so S is regular of dimension d — 1.
By induction hypothesis, S is a domain. So (x) is prime. There exists a
minimal prime @ C (z). For any y € Q, y = ax and = ¢ Q, so a € Q. This
implies that @ = x@, so @ = 0 by Nakayama’s lemma. O

3.4. Depth versus codimension, Cohen—Macaulay rings.

Proposition 3.13. Let R be a ring and I an ideal. Then depth(l, R) <
codim .

The geometric meaning of this proposition is easy to understand: if V(1)
is contained in r hypersurfaces intersecting “properly”, then its codimension
is at most r.

Proof. Let x1,...,x, be a maximal regular sequence in I. Since x; is a non-
zero-divisor, z1 is not contained in any minimal primes, so codim I/(z1) <
codim/ — 1. By induction, codim I/(x1) > depth(I/(z1),R/(z1)) = n —
1. O

So it is interesting to investigate the equality case.

Definition 3.14. R is a Cohen-Macaulay ring if depth(I, R) = codim I for
every proper ideal I.

Theorem 3.15. R is Cohen—Macaulay iff depth(P, R) = codim P for every
mazximal ideal P.

Proof. 1t suffices to show that if depth(P, R) = codim P for every maximal
ideal P, then depth(/, R) > codim I.

We first show that depth(/, R) can be localized, that is, there exists a
maximal ideal P such that depth(/, R) = depth(/p, Rp). Using the Koszul
complex (Theorem 2.15), depth(I, R) is the minimal integer r such that
H"(K(x1,...,2,)) # 0, where I = (x1,...,2,), so there exists a maximal
ideal P such that H" (K (z1,...,2,))p # 0, which implies that depth(I, R) =
depth(Ip, RP)

So after localization, we may assume that (R, P) is a local ring.

If P is the only prime containing I, then codim P = codim I by definition.
We claim that depth P = depth I. It suffices to show that depth P < depth [.
As R/I is a local ring which has only one prime P, it can be shown that
P* C I for some integer k (consider the radical of 0). Let z1,...,2, be a
maximal regular sequence in P, then x’f ,..., ok € I which is also a regular
sequence (see Exercise). So depth P < depth I.
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Suppose that P is the only prime containing I. By the Noetherian induc-
tion, we may assume that I is maximal among those satisfying depth(7, R) <
codim I. We can take an element « € P but not in any minimal primes con-
taining I, then depth(I + (x), R) = codim( + (x)) > codim I + 1. So we
finish the proof by showing r» = depth(I + (z), R) < depth(I, R) + 1. Sup-
pose I = (z1,...,xy,) and I + (x) = (z1,...,2,,x). By the Koszul complex
(Theorem 2.15), HI(K(z1,...,2n,2)) = 0 for j < r, which implies that
HI(K(x1,...,2,)) = 0 for j < 7 — 1 by Corollary 2.24 and Nakayama’s
lemma, so depth(l, R) > r — 1. O

Finally we prove a property of CM ring.

Theorem 3.16 (Exercise). Let (R,m) be a local ring and x € m is not a
zero-divisor. Then R is CM iff R/(x) is CM.
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