
1. (20 points) Let k be an algebraically closed field of characteristic 
0. Assume

A = k[x, y, z]/(x2y + xy2 + z3 + 1).

And define the affine scheme S = Spec A.
(1) Describe all points of S, as well as the closure of each point. Determine

which of them are closed points.

(2) Determine whether S is separated. And determine whether S is proper.

(3) Let X be the subscheme of P3
k defined by a single homogeneous polynomial

g(x0, x1, x2, x3) = x3
0 + x2

1x2 + x1x
2
2 + x3

3.

Show that S is an affine open subscheme of X.

(4) Let C be the intersection of X and the plane (x0 = 0) in P3
k, and OC its

structure sheaf. Compute Ȟ i(C,OC) for all non-negative integers i.

Solution:

(1)

For simplicity, we write f(x, y, z) = x2y + xy2 + z3 + 1.

The points of S are in one-to-one correspondence with prime ideals of A, which are
moreover in one-to-one correspondence with prime ideals of k[x, y, z] containing f .

The only 2-dimension ideal (minimal ideal) of A is (0). To show (0) is a prime
ideal, one has to prove f is an irreducible polynomial. We regard f as a quadratic
polynomial in x. If f is reducible, then it can be factored into either

f = (xy + g1(y, z))(x+ g2(y, z)) or f = h1(x, y, z)h2(y, z)

where the highest degree of x in h1(x, y, z) is 2. Both cases can be manually ruled
out. Indeed, in the first case, since g1 · g2 = z3 + 1, both g1 and g2 have to be
independent of y (otherwise their product contains y since k[z] is a domain). This
then would make g1 + y · g2 = y2 impossible; in the second case, h2 would be a
common factor of y, y2 and z3 + 1, which has to be 1. Therefore f is irreducible
hence (0) is a prime ideal. It corresponds to the generic point of S. As every prime
ideal contains (0), the closure of this point is the collection of all points.

The 0 dimensional ideals (maximal ideals) of A correspond to maximal ideals of
k[x, y, z] containing f . Since k is algebraically closed, the Nullstellensatz confirms
that every such maximal ideal is of the form (x− a, y − b, z − c) for some a, b, c ∈ k
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such that f(a, b, c) = 0. The points corresponding to these ideals are closed points
of S. The closure of each of these contains only the point itself.

The remaining points are given by all 1 dimensional ideals of A, which are the generic
points of irreducible curves on S. (For this question, it might suffice to say just that
much, as there doesn’t seem to be a reasonable way to classify these ideals – as least
the TA doesn’t know how to do it.) The closure of every such ideal contains not
only the point itself, but also all the closed points of the curve.

(2)

The scheme S is separated. Indeed, one can prove that every affine scheme SpecA is
separated either by the definition of separatedness in Hartshorne, or by the valuative
criterion mentioned in lectures.

First approach: By the definition in Hartshorne, one has to show that the diagonal
map SpecA → SpecA × SpecA is a closed embedding. Equivalently, the ring
homomorphism A⊗k A → A, (x, y) &→ xy is surjective, which is obvious.

Second approach: By the valuative criterion, one has to show there is at most one
way to fit the dashed arrow to make the diagram

SpecK SpecA

SpecR

commute, where R is a DVR and K its field of fractions. Dually, this corresponds
to the uniqueness of the dashed arrow (if it exists) in the diagram

K A

R

which is obvious as R → K is injective.

The scheme S is not proper. This is intuitively clear. For a rigorous argument,
one can invoke either the definition of properness in Hartshorne, or the valuative
criterion mentioned in lectures.

First approach: Using the definition in Hartshorne, we can check that the structure
morphism SpecA → Spec k is not universally closed. There are many ways to see
this. For instance, it is easy to see that the affine line L = Spec k[x, y, z]/(x, z + 1)
is a closed subscheme of S. We claim the projection morphism S × L → L is not
closed. In fact, let H be the closure of the set {((0, y1,−1), (0, y2,−1)) | y1y2 = 1}
in S×L (which is actually defined by 3 equations in S×L). The image of H under
the second projection to L contains all points except the origin, which is not closed.

Second approach: With use the valuative criterion, we consider the diagram

Spec k(t) SpecA

Spec k[t](0)



which dually corresponds to

k(t) k[x, y, z]/(f)

k[t](0)

in which x &→ 0, y &→ 1
t
and z &→ −1 in the horizontal arrow. It is clear that the

dashed arrow cannot exist to make the diagram commute, as the vertical arrow is
injective and 1

t
is not in its image.

(c)

P3
k can be covered by standard affine charts Ui where 0 ! i ! 3. The part of X in

U0 = (x0 ∕= 0) is precisely S.

(d)

This is essentially Exercise IV-4.

The curve C lives in P2
k (defined by x0 = 0) and avoids the point [0 : 0 : 1]. Therefore

we can cover it by two affine charts U1 and U2, where

U1 = C ∩ (x1 ∕= 0) = Spec k[u, t]/(f(u, 1, t));

U2 = C ∩ (x2 ∕= 0) = Spec k[ut−1, t−1]/(f(ut−1, t−1, 1)).

The Čech complex for computing Ȟ(C,OC), namely

Γ(U1,OU1)⊕ Γ(U2,OU2) −→ Γ(U1 ∩ U2,OU1∩U2)

can be explicitly written as

k[u, t]/(f(u, 1, t))⊕ k[ut−1, t−1]/(f(ut−1, t−1, 1))
ξ−→ k[u, t, t−1]/(f(u, 1, t))

(g(u, t) , h(ut−1, t−1)) &−→ g(u, t)− h(ut−1, t−1)

where f(u, 1, t) = u3 + t2 + t.

First we analyze ker ξ. Assume g(u, t)− h(ut−1, t−1) = f(u, 1, t) · ϕ(u, t, t−1). Then
ϕ can be regarded as a Laurent polynomial in t with coefficients in k[u]. Without
loss of generality, we can assume ϕ does not contain terms with non-negative powers
of t, as otherwise we can choose a different representative of g to make this happen.
Hence every term in ϕ is a fraction. Moreover, we can also assume every term in
ϕ is of degree strictly larger than −3, as otherwise we can replace h by a different
representative to make this happen. Hence every term in ϕ has a certain power of
t in its denominator and is of degree larger than −3. If such a function ϕ ∕= 0,
then we look at its terms with the highest power of u, say ukϕ0(t

−1). Then the
terms with the highest power of u in the product f ·ϕ is uk+1ϕ0(t

−1), in which each
term is of positive degree. This is a contradiction as neither g(u, t) nor h(ut−1, t−1)
contains such a term. Therefore ϕ = 0, which implies g(u, t) = h(ut−1, t−1), which
is possible only when g and h are the same constant function. This proves that
Ȟ0(C,OC) = ker ξ ∼= k.

Then we compute coker ξ. Due to the form of f(u, 1, t), every element in the target
k[u, t, t−1]/(f(u, 1, t)) can be represented by a Laurent polynomial, in which no term
is divisible by u3. It is clear that every term without a denominator can be hit by



the image of k[u, t]/(f(u, 1, t)), and every term of non-positive degree can be hit
by the image of k[ut−1, t−1]/(f(ut−1, t−1, 1)). The only remaining term which could

appear in the above Laurent polynomial is a constant multiple of u2

t
ϕ1(u). This

proves that Ȟ1(C,OC) = coker ξ ∼= k.

Since the Čech complex contains only two non-trivial terms, we immediately obtain
Ȟi(C,OC) = 0 for all i ∕= 0 or 1.



2. (20 points) Let G,B, T be a reductive group, a Borel subgroup, and a maximal torus, and let
W be the Weyl group. The action of W on X(T ) extends to an action on the group ring Z[X(T )],
and so one can consider the ring of invariants Z[X(T )]W . Show that for any finite-dimensional
G-representation V , the formal character ch(V ) lies in Z[X(T )]W .

Proof. Assume that (V, π) is a finite dimensional representation of G. Then we have a decompo-
sition according to the weight : V =

⊕
λ∈P (π) Vλ, where P (π) = {λ ∈ X(T )|Vλ 6= 0}. Now for any

w ∈ W , take w̃ ∈ G which represents w. Consider the representation: (V, πw̃) by :

πw̃(g) = π(w̃−1gw̃)

for any g ∈ G. For t ∈ T and v ∈ Vλ(π), we have:

πw̃(t)v = π(w̃−1tw̃)v

= λ(w̃−1tw̃)v

= w(λ)(t)v

This implies that v ∈ Vw(λ)(πw̃), hence

V =
⊕
λ∈P (π)

Vw(λ)

But we have an isomorphism of represnetations :

ϕ : (V, π)→ (V, πw̃)

v 7→ π(w̃−1)v

Therefore the two representations share the same weight space,i.e,

w(P (π)) = P (π)

for any w ∈ W . This shows that:

ch(V ) =
∑

λ∈P (π)

dim(Vλ)e
λ

is invariant under W .

3. (20 points) Let k = k̄ be an algebraic closed field. Hurwitz’s theorem states that if char(k)= 0
and C is a non-singular projective curve over k of genus g(C) ≥ 2, then

|Aut(C)| ≤ 84(g − 1)

1. Assume that char(k)= 0 and g(C) = 2, show that C cannot have an automorphism of order
7. Conclude that Hurwitz’s bound is not optimal when g(C) = 2.

2. Assume that char(k)= p > 0. Let C be the non-singular projective model of the plane curve
{Y 2 = Xp − X} ⊂ A2

k. Compute the genus of C and prove that for p sufficiently large,
|Aut(C)| > 84(g − 1). The implies Hurwitz’s theorem fails in positive characteristics.



Proof. 1. Assume that there is a group G ⊂ Aut(X) and |G| = 7. We consider the degree of
ramification divisorR to derive contradiction. Let C ′ be the normalization of C/G. Since C is
normal, the quotient C/G is also normal hence nonsingular and the quotient map π : C → C ′

has degree 7. If c ∈ C is a closed point, we have |G·c|·|Gc| = |G| = 7, so |G·c| = 1 or 7. That
means for a closed point c′ ∈ C ′, the inverse image π−1(c′) consists of 1 or 7 points, hence
the ramification index ec = 0 or 7. Therefore, degree of the ramification divisor R must be
divisible by 6. By Hurwitz’s theorem, we have 2g(C) − 2 = deg(π)(2g(C ′) − 2) + degR. If
g(C ′) ≥ 2, we have degR < 0, which is impossible. If g(C ′) = 0 or 1, then degR = 2 or 16,
which are not divisible by 6.

2. If char(k) = 2, the curve is a smooth conic, genus 0. Now we consider the case char(k) 6= 2.
Let C be the normalization of the curve. Let π : C → P1, [X : Y : Z] 7→ [X : Z] be the
projection. Over A1, it is ramified at p points with the ramification index 2 . It is also
possibly ramified at ∞, with ramification index ep ≤ 2. By Hurwitz formula, 2g(C) − 2 =
2(0− 2) +

∑
(eP − 1) + (e∞− 1). Therefore 2g(C) + 2 = p+ e∞− 1, the genus is an integer,

and e∞ ∈ {1, 2}, it forces e∞ = 2 and g(C) = p−1
2

.

Let a1, . . . , ap be the roots of xp − x and j = 0, 1, . . . , p− 1. We consider the following two
kinds of automorphism of A2

k: {
x 7→ a2ix
y 7→ aiy

{
x 7→ x+ j
y 7→ y

(1)

They both fix the curve C and generate an order p(p−1) subgroup in Aut(C). So |Aut(C)| ≥
p(p− 1). Since g(C) = p−1

2
, we get the conclusion.

4. (20 points) Let R be a ring and x1, · · · , xn be a regular sequence, denote I = (x1, · · · , xn).

1. Given x ∈ R, show that if (I : x) = I, then (Id : x) = Id for any d > 0.

2. Show that if f(t) ∈ R[t1, · · · , tn] homogeneous degree d and f(x) ∈ Id+1, then f ∈ I[t].

Proof. We split the proof into two steps

• (2d,n)⇒ (1d,n) For d = 1, there’s nothing to prove, let’s assume d ≥ 2. For any a ∈ (Id : x),
we have ax ∈ Id ⊂ I. By assumption (I : x) = I, we know a ∈ I. Therefore we can
write a =

∑
rixi. Note that

∑
(rix)xi = ax ∈ Id ⊂ I2. By (2) we know rix ∈ I, again by

(I : x) = I, we know ri ∈ I. Therefore we can write ri = rijxj and a =
∑
rijxixj. We repeat

the process (d− 2) times and conclude.

• (2d−1,n) + (2d,n−1) ⇒ (2d−1,n) + (1d,n−1) ⇒ (2d,n). Let J = (x1, · · · , xn−1), we know (J :
xn) = J . Let’s write f = g + tnh, where g ∈ (R[t1, · · · , tn−1])d and h ∈ (R[t1, · · · , tn])d−1.
A clever observation is that we can assume f(x) = 0. (Given f(x) ∈ Id+1, there exists
a homogeneous polynomial k ∈ (R[t1, · · · , tn])d+1 such that k(x) = f(x). We write k =∑
tiki where ki ∈ (R[t1, · · · , tn])d. Then we may replace f by f(t) −

∑
xiki(t)). Then

g(x) + xnh(x) = 0. By (1d,n−1) we know h(x) ∈ (Jd : xn) = Jd ⊂ Id. Applying (2d−1,n) we
know h ∈ I[t]. Since h(x) ∈ Jd, there exists l(x) ∈ R[t1, · · · , tn−1] such that h(x) = l(x).
Putting G(t) = g(t1, · · · , tn−1) + xnl(t) we have G(x) = 0, by (2d,n−1) we know G ∈ I[t],
therefore g ∈ I[t]. Then f = g + xnh ∈ I[t].



• We prove (2d,n) by induction on (d, n) ∈ N× N, the initial cases (0, n) and (d, 1) are clear.
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