

Density of C₄-critical signed graphs

Wang, Zhouningxin Université Paris Cité and Nankai University

Time: August 12th, 14:00 - 15:00 Zoom meeting ID: 843 9122 8340 Password: 121323 Link: https://zoom.us/j/84391228340

Abstract:

A signed graph (G, σ) is a graph *G* together with a signature $\sigma : E(G) \rightarrow \{+, -\}$. A homomorphism of a signed graph (G, σ) to another signed graph (H, π) is a mapping from V(G) to V(H) such that the adjacency and the signs of closed walks are preserved. Given a signed graph (G, σ) , let $g_{ij}(G, \sigma)$ $(ij \in \mathbb{Z}_2^2)$ denote the length of a shortest non-trivial closed walk whose parity of the number of negative edges is equal to *i* modulo 2 and parity of the length is equal to *j* modulo 2. We observe that if (G, σ) admits a homomorphism to (H, π) , then $g_{ij}(G, \sigma) \ge g_{ij}(H, \pi)$ for each $ij \in \mathbb{Z}_2^2$. A signed graph (G, σ) is (H, π) -critical if it satisfies that $g_{ij}(G, \sigma) \ge g_{ij}(H, \pi)$, and it admits no homomorphism to (H, π) but each of its proper subgraphs does.

By a signed indicator construction, we first show that the *k*-coloring problem of graphs is captured by the C_{-k} -coloring problem of signed graphs. Then we prove that, except for one particular signed graph on 7 vertices and 9 edges, any C_{-4} -critical signed graph on *n* vertices must have at least $\lceil \frac{4n}{3} \rceil$ edges. Moreover, for each value of $n \ge 9$, there exists a C_{-4} -critical signed graph on *n* vertices with either $\lceil \frac{4n}{3} \rceil$ or $\lceil \frac{4n}{3} \rceil + 1$ many edges. As an application to planar graphs, we conclude that every signed bipartite planar graphs of negative-girth at least 8 admits a homomorphism to C_{-4} and, furthermore, this bound is the best possible. This fits well into a larger framework of the study of analog of Jaeger-Zhang conjecture.

This is joint work with Reza Naserasr and Lan Anh Pham.