Density of C_{-4}－critical signed graphs Wang，Zhouningxin Universitê Paris Citê and Nankai University

Time：August 12th，14：00－15：00
Zoom meeting ID： 84391228340 Password： 121323
Link：https：／／zoom．us／j／84391228340

Abstract：

A signed graph (G, σ) is a graph G together with a signature $\sigma: E(G) \rightarrow\{+,-\}$ ．A homomorphism of a signed graph (G, σ) to another signed graph (H, π) is a mapping from $V(G)$ to $V(H)$ such that the adjacency and the signs of closed walks are preserved． Given a signed graph (G, σ) ，let $g_{i j}(G, \sigma)\left(i j \in \mathbb{Z}_{2}^{2}\right)$ denote the length of a shortest non－trivial closed walk whose parity of the number of negative edges is equal to i modulo 2 and parity of the length is equal to j modulo 2．We observe that if (G, σ) admits a homomorphism to (H, π) ，then $g_{i j}(G, \sigma) \geq g_{i j}(H, \pi)$ for each $i j \in \mathbb{Z}_{2}^{2}$ ．A signed graph (G, σ) is (H, π)－critical if it satisfies that $g_{i j}(G, \sigma) \geq g_{i j}(H, \pi)$ ，and it admits no homomorphism to (H, π) but each of its proper subgraphs does．

By a signed indicator construction，we first show that the k－coloring problem of graphs is captured by the C_{-k}－coloring problem of signed graphs．Then we prove that，except for one particular signed graph on 7 vertices and 9 edges，any C_{-4}－critical signed graph on n vertices must have at least $\left\lceil\frac{4 n}{3}\right\rceil$ edges．Moreover，for each value of $n \geq 9$ ， there exists a C_{-4}－critical signed graph on n vertices with either $\left\lceil\frac{4 n}{3}\right\rceil$ or $\left\lceil\frac{4 n}{3}\right\rceil+1$ many edges．As an application to planar graphs，we conclude that every signed bipartite planar graphs of negative－girth at least 8 admits a homomorphism to C_{-4} and，furthermore，this bound is the best possible．This fits well into a larger framework of the study of analog of Jaeger－Zhang conjecture．

This is joint work with Reza Naserasr and Lan Anh Pham．

