## Algebraic surfaces

Lecture III: minimal models

### Arnaud Beauville

Université Côte d'Azur

July 2020

## Geometrically ruled surfaces

### Definition

- A surface S is **ruled** if it is birational to  $C \times \mathbb{P}^1$ .
- If  $C = \mathbb{P}^1$ , we say that S is rational.
- S is geometrically ruled if  $\exists p : S \to C$  smooth, fibers  $\cong \mathbb{P}^1$ .

The last definition is justified by:

Theorem (Noether-Enriques)

 $p: S \rightarrow C$  geometrically ruled  $\Rightarrow S$  ruled.

Note that this is specific to surfaces: there exist smooth morphisms  $X \to S$  (S surface) with all fibers  $\cong \mathbb{P}^1$ , but X not birational to  $S \times \mathbb{P}^1$  (Severi-Brauer varieties).

# Minimal ruled surfaces

#### Theorem

S ruled not rational. S minimal  $\Leftrightarrow$  S geometrically ruled.

**Proof**: 1) 
$$p: S \to C$$
 with fibers  $\cong \mathbb{P}^1$ ,  $g(C) \ge 1$ .  
If  $E \subset S$ ,  $p(E) = q \in \mathbb{P}^1$  since  $g(C) \ge 1 \Rightarrow E = p^{-1}(q) \Rightarrow E^2 = 0$ .  
2)  $S \cong C \times \mathbb{P}^1 \iff$  rational map  $p: S \dashrightarrow C$ ,  $g(C) \ge 1$ .

**Claim** : *p* is a morphism.

If not,  $\begin{array}{c}
S_n \\
u \\
S_{---} \\
S_{---} \\
C
\end{array}$   $u: S_n \rightarrow S_{n-1} \rightarrow \cdots \rightarrow S_0 = S.$ 

 $E_n \subset \hat{S}$  exceptional curve; since  $g(C) \ge 1$ ,  $v(E_n) = \{ pt \} \Rightarrow$  can replace  $S_n$  by  $S_{n-1}$ , then ... till  $S_0 \Rightarrow \square$ .

# End of the proof

3)  $p: S \to C$ , general fiber  $F \cong \mathbb{P}^1$ . Want to prove all fibers  $\cong \mathbb{P}^1$ . Recall:  $F^2 = 0$ ,  $K \cdot F = -2$  (genus formula).

- F irreducible  $\Rightarrow F \cong \mathbb{P}^1$  (genus formula).
- F = mF'? Only possibility m = 2,  $K \cdot F' = -1$ , contradicts genus formula.
- $F = \sum n_i C_i$ . Claim :  $\Rightarrow C_i^2 < 0 \ \forall i$ . Because:  $n_i C_i^2 = C_i \cdot (F - \sum_{j \neq i} n_j C_j), \ C_i \cdot F = 0, \ C_i \cdot C_j \ge 0$ , and  $C_i \cdot C_j > 0$  for some j since F is connected.
- Then  $K \cdot C_i = 2g(C_i) 2 C_i^2 \ge -1$ ,  $= -1 \Leftrightarrow C_i$  exceptional.
- So if S minimal,  $(K \cdot C_i) \ge 0 \ \forall i \implies (K \cdot F) \ge 0$ , contradiction.

*E* rank 2 vector bundle on *C*  $\longrightarrow$  projective bundle  $p : \mathbb{P}_{C}(E) \to C, \ p^{-1}(x) = \mathbb{P}(E_{x}), \text{ so } \mathbb{P}_{C}(E) \text{ is a geometrically}$ ruled surface.

The following can be deduced from the Noether-Enriques theorem:

### Proposition

Every geometrically ruled surface is a projective bundle.

There is a highly developed theory of vector bundles on curves, particularly in rank 2; therefore the classification of minimal ruled surfaces is well understood.

## Elementary transformation



 $f: S \to C$  geometrically ruled. Choose  $p \in C$ ,  $q \in F := f^{-1}(p)$ . Blow up q.  $\hat{f}: \hat{S} \xrightarrow{b} S \xrightarrow{f} C$ . Fiber above  $p = E \cup \hat{F}$ .  $0 = (\hat{f}^*p)^2 = (E + \hat{F})^2 = E^2 + \hat{F}^2 + 2 \Rightarrow$   $\hat{F}^2 = -1$ , hence  $\hat{F}$  is an exceptional curve (Castelnuovo). Contraction  $c: \hat{S} \to S'$ :

 $\hat{f}$  induces  $g: S' \to C$  geometrically ruled.

## Elementary transformation with section



Let  $\Sigma \subset S$  be a section of f passing through q. Then  $\Sigma$  and F are transverse, so  $\hat{\Sigma} \cap \hat{F} = \emptyset$  in  $\hat{S}$ , and c maps  $\hat{\Sigma}$  isomorphically to  $\Sigma'$  section of g.

Then 
$$\Sigma'^2 = \hat{\Sigma}^2 = (b^*\Sigma - E)^2 = \Sigma^2 - 1 \,. \label{eq:sigma}$$

#### Lemma

Suppose  $\operatorname{Pic}(S) = \mathbb{Z}[F] \oplus \mathbb{Z}[\Sigma]$ . Then  $\operatorname{Pic}(S') = \mathbb{Z}[F'] \oplus \mathbb{Z}[\Sigma']$ .

**Proof**: It suffices to prove that  $(c^*F', c^*\Sigma', E)$  basis of  $Pic(\hat{S})$ . But  $c^*F' = b^*F$ ,  $c^*\Sigma' = \hat{\Sigma} = b^*\Sigma - E$ , and  $(b^*F, b^*\Sigma, E)$  basis of  $Pic(\hat{S})$ .

## The surfaces $\mathbb{F}_n$

### Proposition

- For  $n \ge 0$ ,  $\exists$  a geometrically ruled rational surface  $\mathbb{F}_n \to \mathbb{P}^1$ , with a section  $\Sigma$  of square -n, and  $\operatorname{Pic}(\mathbb{F}_n) = \mathbb{Z}[F] \oplus \mathbb{Z}[\Sigma]$ .
- For n > 0, the curve  $\Sigma$  is the only curve of square < 0 on  $\mathbb{F}_n$ .

**Proof**: We start with  $\mathbb{F}_0 := \mathbb{P}^1 \times \mathbb{P}^1$ , with  $f = \text{pr}_1$  and  $\Sigma = \mathbb{P}^1 \times \{0\}$ . Once  $(\mathbb{F}_n, \Sigma)$  is constructed, we choose  $q \in \Sigma$ : elementary transformation  $\dashrightarrow$   $\mathbb{F}_{n+1} = S_1$  with  $\Sigma^2 = -n - 1$ .

• By the Lemma,  $\mathsf{Pic}(\mathbb{F}_n) = \mathbb{Z}[F] \oplus \mathbb{Z}[\Sigma]$ .

• Let  $C \neq \Sigma$  irreducible curve on  $\mathbb{F}_n$ .  $C \equiv a\Sigma + bF$ .  $(C \cdot F) \ge 0 \Rightarrow a \ge 0;$   $(C \cdot \Sigma) = -an + b \ge 0$  $\Rightarrow C^2 = -na^2 + 2ab = a(2b - an) \ge an^2 \ge 0.$ 

### Corollary

 $\mathbb{F}_n$  is minimal for  $n \neq 1$ .

 $\mathbb{F}_1$  is obtained by blowing up a point q in  $\mathbb{P}^1 \times \mathbb{P}^1$  and contracting one of the lines through q; by stereographic projection,  $\mathbb{F}_1 \cong \hat{\mathbb{P}}^2$ .

### Theorem

The minimal rational surfaces are  $\mathbb{P}^2$  and  $\mathbb{F}_n$  for  $n \neq 2$ .

**Remark :** Being geometrically ruled, the surfaces  $\mathbb{F}_n$  are of the form  $\mathbb{P}_{\mathbb{P}^1}(E)$ . It is not difficult to show that all vector bundles on  $\mathbb{P}^1$  are direct sums of line bundles; in fact, it was observed by Hirzebruch that  $\mathbb{F}_n = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n))$ .