2020 Algebraic Geometry Summer School Exam B

1．（20 points）Let k be an algebraically closed field in characteristic 0 ．Let $P(t)=2 t+2$ ．
1．Show that the Hilbert scheme $\operatorname{Hilb}\left(P, \mathbb{P}_{k}^{3}\right)$ has at least two irreducible components：one component H_{0} of dimension 8 and one componnet H_{1} of dimension 11.

2．Descibe the elements in $H_{0} \cap H_{1}$ ．
Proof．As the Hilbert polynomial $P(t)=2 t+2$ is of degree 1 ，any closed point of $\operatorname{Hilb}\left(P, \mathbb{P}_{k}^{3}\right)$ contains a degree 2 curve in \mathbb{P}_{k}^{3} ．Then by the Castelnuovo inequality，we can see $g(C)=0$ for any integral curve $[C] \in \operatorname{Hilb}\left(P, \mathbb{P}_{k}^{3}\right)$ ．There following two cases：

1．$P=(t+1)+(t+1)$ ．In this case，it is a union of two \mathbb{P}_{k}^{1} in \mathbb{P}_{k}^{3} ．Hence the dimension of this component is $2 \operatorname{dim}\left(\mathbb{P}_{k}^{3}\right)^{*}=8$ ．

2．$P=(2 t+1)+1$ ．In this case，it is a union of a conic and a point in \mathbb{P}_{k}^{3} ．Hence the dimension is ${ }^{1}$

$$
\operatorname{dim}\left(\left(\mathbb{P}_{k}^{3}\right)^{[1]}\right)+\operatorname{dim}\left(\operatorname{Hilb}\left(2 t+1, \mathbb{P}_{k}^{3}\right)\right)=11
$$

For the second question，you only need to note that the intersection of these two components contains the degenerated conics，which are two \mathbb{P}_{k}^{1} that intersect at one point．

2．（20 points）Let S be a smooth surface of degree d in \mathbb{P}^{3} containing a line ℓ ．
1．Compute ℓ^{2} ．
2．Prove that the planes through ℓ cut out a pencil $|F|$ with $F^{2}=0$ ．Prove that $|F|$ is base point free，and defines a morphism $S \rightarrow|F|^{\vee} \cong \mathbb{P}^{1}$ ．

3．We suppose $d=3$ ，and that S contains the lines $X=Y=0, Z=T=0, Y=T=0$ ．Show that the rational map $\varphi: S \rightarrow \mathbb{P}^{2}, \varphi(X, Y, Z, T)=(X T, Y T, Y Z)$ extends to a morphism $S \rightarrow \mathbb{P}^{2}$（use b）to extend φ along the 3 lines）．

Proof．1．We use adjunction formula to calculate the canonical divisor $\mathcal{O}_{\mathbb{P}^{1}}(-2)$ on L ：$-2=$ $\left.K_{L}\right|_{L}=\left.\left(L+K_{S}\right)\right|_{L}=\left.(L+O(d-4))\right|_{L}=L^{2}+d-4$, therefore $L^{2}=2-d$.

2．$d=(F+L)^{2}=F^{2}+2 F L+L^{2}$ ，note that by Bezout $F L=d-1$ ，therefore $F^{2}=d-2 d+$ $2+d-2=0$ ．Since F sweep through all points on L ，it suffices to show F has no base points on L ，but any base point contributes +1 to $F^{2}=0$ ．It defines a morphism to \mathbb{P}^{1} as it is base point free．

3．Setting the homogeneous coordinates all be zero，we see the undefined locus are the union of three lines $X=Y=0 T=Y=0$ and $T=Z=0$ in \mathbb{P}^{3} ．Since S contains all these three (-1)－curves，it suffices to show ϕ extends to a morphism on each of them．We just explicitly write them down by cancelling the equal factors：For example on $(X=Y=0)$ ，we extend it as $(X, Y, Z, T) \rightarrow(T, T, Z)$ ，it is well defined because by $b)(X, Y, Z, T) \rightarrow(T, Z)$ is well defined，and $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}:(A, B) \mapsto(A, A, B)$ is well－defined．

[^0]3. (20 points) Let $k \geq 2$ be an integer. Recall that we have the Eisenstein series
$$
G_{2 k}(\tau)=\sum_{(c, d) \in \mathbb{Z}^{2} \backslash\{(0,0)\}} \frac{1}{(c \tau+d)^{2 k}},
$$
which is an element in $\mathcal{M}_{2 k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$.

1. Show that for every prime $p, G_{2 k}$ is an eigenvector for the Hecke operator T_{p} with eigenvalue $\sigma_{2 k-1}(p)$.
2. Show that for every integer $n \geq 1, G_{2 k}$ is an eigenvector for the Hecke operator T_{n} with eigenvalue $\sigma_{2 k-1}(n)$.
3. Let $F_{2 k}$ be the normalized Hecke eigenform that is proportional to $G_{2 k}$. Use (2) to conclude that

$$
F_{2 k}(\tau)=c_{2 k}+\sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n}
$$

for some constant $c_{2 k}$.
4. For a normalized Hecke eigenform $f(\tau)=\sum_{n=0}^{\infty} a_{n}(f) q^{n}$, we define its L-function to be

$$
L(s, f)=\sum_{n=1}^{\infty} a_{n}(f) n^{-s}
$$

where s is a complex variable. Express $L\left(s, F_{2 k}\right)$ in terms of the Riemann zeta function $\zeta(s)$. (You may ignore the issue of convergence.)

Proof. 1. By definition of T_{p} :

$$
\begin{aligned}
T_{p} G_{2 k}(\tau) & =\frac{1}{p} \sum_{j=0}^{p-1} G_{2 k}\left(\frac{\tau+j}{p}\right)+p^{2 k-1} G_{2 k}(p \tau) \\
& =\frac{1}{p} \sum_{j} \sum_{c, d} \frac{1}{\left(c \frac{\tau+j}{p}+d\right)^{2 k}}+p^{2 k-1} \sum_{c, d} \frac{1}{(c p \tau+d)^{2 k}} \\
& =A+B
\end{aligned}
$$

where A denotes the first sum and B the second. We have:

$$
\begin{aligned}
A & =\frac{1}{p} \sum_{p \nmid c} \sum_{j} \sum_{d} \frac{p^{2 k}}{(c \tau+c j+d p)^{2 k}}+\frac{1}{p} \sum_{c=p c^{\prime}} \sum_{j} \sum_{d} \frac{1}{\left(c^{\prime} \tau+c^{\prime} j+d\right)^{2 k}} \\
& =C+G_{2 k}(\tau)
\end{aligned}
$$

where C denotes the sum $\frac{1}{p} \sum_{p \nmid c} \sum_{j} \sum_{d} \frac{p^{2 k}}{(c \tau+c j+d p)^{2 k}}$. We have:

$$
\begin{aligned}
C & =p^{2 k-1} \sum_{p \nmid c} \sum_{d^{\prime} \in \mathbb{Z}} \frac{1}{\left(c \tau+d^{\prime}\right)^{2 k}} \\
& =p^{2 k-1}\left(\sum_{c, d} \frac{1}{(c \tau+d)^{2 k}}-\sum_{p \mid c} \sum_{d} \frac{1}{(c \tau+d)^{2 k}}\right) \\
& =p^{2 k-1} G_{2 k}(\tau)-B
\end{aligned}
$$

Therefore，

$$
\begin{aligned}
T_{p} G_{2 k}(\tau) & =C+B+G_{2 k}(\tau) \\
& =\left(p^{2 k-1}+1\right) G_{2 k}(\tau) \\
& =\sigma_{2 k-1}(p) G_{2 k}(\tau)
\end{aligned}
$$

2．One proves first inductively $T_{p^{r}} G_{2 k}=\sigma_{2 k-1}\left(p^{r}\right) G_{2 k}$ ．Suppose it＇s true for $\leq r-1$ ，Then

$$
\begin{aligned}
T_{p^{r}} G_{2 k} & =T_{p} T_{p^{r-1}} G_{2 k}-p^{2 k-1} T_{p^{r-2}} G_{2 k} \\
& =T_{p} \sigma_{2 k-1}\left(p^{r-1}\right) G_{2 k}-p^{2 k-1} \sigma_{2 k-1}\left(p^{r-2}\right) G_{2 k} \\
& =\left(\sigma_{2 k-1}(p) \sigma_{2 k-1}\left(p^{r-1}\right)-p^{2 k-1} \sigma_{2 k-1}\left(p^{r-2}\right)\right) G_{2 k} \\
& =\sigma_{2 k-1}\left(p^{r}\right) G_{2 k}
\end{aligned}
$$

Then，for $n=p_{1}^{e_{1}} \cdots p_{s}^{e_{s}}$ ，we have $T_{n} G_{2 k}=T_{p_{1}^{e_{1}}} \cdots T_{p_{s}^{e_{s}}} G_{2 k}=\sigma_{2 k-1}\left(p_{1}^{e_{1}}\right) \cdots \sigma_{2 k-1}\left(p_{s}^{e_{s}}\right) G_{2 k}=$ $\sigma_{2 k-1}(n) G_{2 k}$ ，by direct verification．

3．One proves the following statement，and apply（2）：
If $f=\sum_{n=0}^{\infty} a_{n} q^{n}$ is a normalized eigenform，then $a_{1}\left(T_{n} f\right)=a_{n}$ for $n \in \mathbb{N}^{+}$
Proof．For prime p ，we have $a_{1}\left(T_{p} f\right)=a_{p}+p^{2 k-1} a_{\frac{1}{p}}=a_{p}$ ．We prove by induction that $a_{1}\left(T_{p^{r}} f\right)=a_{p^{r}}:$

$$
\begin{aligned}
a_{1}\left(T_{p^{r}} f\right) & =a_{1}\left(T_{p^{r-1}} T_{r} f\right)-p^{2 k-1} a_{1}\left(T_{p^{r-2}} f\right) \\
& =a_{p^{r-1}}\left(T_{r} f\right)-p^{2 k-1} a_{p^{r-2}} \\
& =a_{p^{r}}+p^{2 k-1} a_{p^{r-2}}-p^{2 k-1} a_{p^{r-2}} \\
& =a_{p^{r}}
\end{aligned}
$$

for $r \nmid n$ ，suppose $a_{1}\left(T_{n} f\right)=a_{n}$ ，then，

$$
\begin{aligned}
a_{1}\left(T_{n p^{r}} f\right) & =a_{1}\left(T_{n} T_{p^{r}} f\right)=a_{n} \\
& =a_{n}\left(a_{p^{r}} f\right)=a_{n} a_{p^{r}}
\end{aligned}
$$

Hence it＇s also true for $n p^{r}$ ．
4.

$$
\begin{aligned}
L\left(s, F_{2 k}\right) & =\sum_{n=1}^{\infty} \frac{\sigma_{2 k-1}(n)}{n^{s}}=\prod_{p} \sum_{r=0}^{\infty} \frac{\sigma_{2 k-1}\left(p^{r}\right)}{p^{r s}} \\
& =\prod_{p} \sum_{r} \frac{1+p^{2 k-1}+\cdots+p^{(2 k-1) r}}{p^{r s}} \\
& =\prod_{p} \sum_{r} \frac{1}{p^{2 k-1}-1}\left(p^{(2 k-1) r} p^{2 k-1}-p^{-r s}\right) \\
& =\prod_{p} \frac{1}{\left(1-p^{-s}\right)\left(1-p^{2 k-1-s}\right)} \\
& =\zeta(s) \zeta(s-2 k+1)
\end{aligned}
$$

4．（20 points）Let C be a non－hyperelliptic genus g curve，Let

$$
\varphi_{\omega_{C}}=\varphi_{\left|\omega_{C}\right|}: C \hookrightarrow \mathbb{P}\left(H^{0}\left(C, \omega_{C}\right)\right)=\mathbb{P}^{g-1}
$$

1．Suppose C is trigonal．So then there is an effective divisor D of degree 3 such that $h^{0}\left(\mathcal{O}_{C}(D)\right)=2$ ．Show that $\varphi_{\omega_{C}}(D)$ gives you 3 collinear points in \mathbb{P}^{g-1} ．Show that $I_{C / \mathbb{P}^{g-1}}$ can not be generated by quadrics．

2．Assume C is a smooth plane curve of degree $5, \omega_{C}=\left.\mathcal{O}_{\mathbb{P}^{2}}(2)\right|_{C}$ ．Let

$$
\nu_{2}=\varphi_{\mathcal{O}_{\mathbb{P}^{2}}(2)}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5} .
$$

Then $\nu_{2}\left(\mathbb{P}^{2}\right)$ is a degree 4 surface in \mathbb{P}^{5} ．Show that every quadric hypersurface containing C will also containing S ．

Proof．1．By Riemann Roch on curve，we have

$$
l(D)-l(K-D)=\operatorname{deg} D+1-g=4-g
$$

Hence $l(K-D)=g-2$ ，and that means D is collinear in the canonical embedding，otherwise $l(K-D)=g-3$ ．Assume Q is a quadric containing C ，then，the 3 collinear points are contained in Q ．Since degree $Q=2$ ，the line L generated by the 3 point is contained in Q ． If $I_{C / \mathbb{P}^{g-1}}$ are generated by quadrics，then we have $L \subset C$ ，which is impossible．

2．Let Q be a quadric not containing S ，then $Q \cap S$ is a curve of degree $2 \times 4=8$ in \mathbb{P}^{5} by Bezout．But $C \subset Q \cap S$ already has degree $2 \times 5=10>8$ ，therefore C is not contained in $Q \cap S$ ，not contained in Q ．

[^0]: ${ }^{1}$ There is a typo in the test that the＂dimension 10 component＂should be＂dimension 11 component＂

