

2020 Algebraic Geometry Summer School Exam B

- 1. (20 points) Let k be an algebraically closed field in characteristic 0. Let P(t) = 2t + 2.
 - 1. Show that the Hilbert scheme $\operatorname{Hilb}(P, \mathbb{P}^3_k)$ has at least two irreducible components: one component H_0 of dimension 8 and one component H_1 of dimension 11.
 - 2. Describe the elements in $H_0 \cap H_1$.

Proof. As the Hilbert polynomial P(t) = 2t + 2 is of degree 1, any closed point of $\text{Hilb}(P, \mathbb{P}^3_k)$ contains a degree 2 curve in \mathbb{P}^3_k . Then by the Castelnuovo inequality, we can see g(C) = 0 for any integral curve $[C] \in \text{Hilb}(P, \mathbb{P}^3_k)$. There following two cases:

- 1. P = (t+1) + (t+1). In this case, it is a union of two \mathbb{P}^1_k in \mathbb{P}^3_k . Hence the dimension of this component is $2 \dim(\mathbb{P}^3_k)^* = 8$.
- 2. P = (2t+1)+1. In this case, it is a union of a conic and a point in \mathbb{P}^3_k . Hence the dimension is¹

 $\dim((\mathbb{P}^3_k)^{[1]}) + \dim(\mathrm{Hilb}(2t+1,\mathbb{P}^3_k)) = 11.$

For the second question, you only need to note that the intersection of these two components contains the degenerated conics, which are two \mathbb{P}^1_k that intersect at one point. \Box

2. (20 points) Let S be a smooth surface of degree d in \mathbb{P}^3 containing a line ℓ .

- 1. Compute ℓ^2 .
- 2. Prove that the planes through ℓ cut out a pencil |F| with $F^2 = 0$. Prove that |F| is base point free, and defines a morphism $S \to |F|^{\vee} \cong \mathbb{P}^1$.
- 3. We suppose d = 3, and that S contains the lines X = Y = 0, Z = T = 0, Y = T = 0. Show that the rational map $\varphi : S \dashrightarrow \mathbb{P}^2$, $\varphi(X, Y, Z, T) = (XT, YT, YZ)$ extends to a morphism $S \to \mathbb{P}^2$ (use b) to extend φ along the 3 lines).
- *Proof.* 1. We use adjunction formula to calculate the canonical divisor $\mathcal{O}_{\mathbb{P}^1}(-2)$ on L: $-2 = K_L|_L = (L + K_S)|_L = (L + O(d 4))|_L = L^2 + d 4$, therefore $L^2 = 2 d$.
 - 2. $d = (F + L)^2 = F^2 + 2FL + L^2$, note that by Bezout FL = d 1, therefore $F^2 = d 2d + 2 + d 2 = 0$. Since F sweep through all points on L, it suffices to show F has no base points on L, but any base point contributes +1 to $F^2 = 0$. It defines a morphism to \mathbb{P}^1 as it is base point free.
 - 3. Setting the homogeneous coordinates all be zero, we see the undefined locus are the union of three lines X = Y = 0 T = Y = 0 and T = Z = 0 in \mathbb{P}^3 . Since S contains all these three (-1)-curves, it suffices to show ϕ extends to a morphism on each of them. We just explicitly write them down by cancelling the equal factors: For example on (X = Y = 0), we extend it as $(X, Y, Z, T) \rightarrow (T, T, Z)$, it is well defined because by b) $(X, Y, Z, T) \rightarrow (T, Z)$ is well defined, and $\mathbb{P}^1 \rightarrow \mathbb{P}^2$: $(A, B) \mapsto (A, A, B)$ is well-defined.

¹There is a typo in the test that the "dimension 10 component" should be "dimension 11 component"

3. (20 points) Let $k \ge 2$ be an integer. Recall that we have the Eisenstein series

$$G_{2k}(\tau) = \sum_{(c,d) \in \mathbb{Z}^2 \setminus \{(0,0)\}} \frac{1}{(c\tau + d)^{2k}},$$

which is an element in $\mathcal{M}_{2k}(\mathrm{SL}_2(\mathbb{Z}))$.

- 1. Show that for every prime p, G_{2k} is an eigenvector for the Hecke operator T_p with eigenvalue $\sigma_{2k-1}(p)$.
- 2. Show that for every integer $n \ge 1$, G_{2k} is an eigenvector for the Hecke operator T_n with eigenvalue $\sigma_{2k-1}(n)$.
- 3. Let F_{2k} be the normalized Hecke eigenform that is proportional to G_{2k} . Use (2) to conclude that

$$F_{2k}(\tau) = c_{2k} + \sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^n$$

for some constant c_{2k} .

4. For a normalized Hecke eigenform $f(\tau) = \sum_{n=0}^{\infty} a_n(f)q^n$, we define its *L*-function to be

$$L(s,f) = \sum_{n=1}^{\infty} a_n(f) n^{-s},$$

where s is a complex variable. Express $L(s, F_{2k})$ in terms of the Riemann zeta function $\zeta(s)$. (You may ignore the issue of convergence.)

Proof. 1. By definition of T_p :

$$T_p G_{2k}(\tau) = \frac{1}{p} \sum_{j=0}^{p-1} G_{2k}(\frac{\tau+j}{p}) + p^{2k-1} G_{2k}(p\tau)$$

= $\frac{1}{p} \sum_j \sum_{c,d} \frac{1}{(c\frac{\tau+j}{p}+d)^{2k}} + p^{2k-1} \sum_{c,d} \frac{1}{(cp\tau+d)^{2k}}$
= $A + B$

where A denotes the first sum and B the second. We have:

$$A = \frac{1}{p} \sum_{p \nmid c} \sum_{j} \sum_{d} \frac{p^{2k}}{(c\tau + cj + dp)^{2k}} + \frac{1}{p} \sum_{c=pc'} \sum_{j} \sum_{d} \frac{1}{(c'\tau + c'j + d)^{2k}}$$
$$= C + G_{2k}(\tau)$$

where C denotes the sum $\frac{1}{p} \sum_{p \nmid c} \sum_{j} \sum_{d} \frac{p^{2k}}{(c\tau + cj + dp)^{2k}}$. We have:

$$C = p^{2k-1} \sum_{p \nmid c} \sum_{d' \in \mathbb{Z}} \frac{1}{(c\tau + d')^{2k}}$$

= $p^{2k-1} (\sum_{c,d} \frac{1}{(c\tau + d)^{2k}} - \sum_{p \mid c} \sum_{d} \frac{1}{(c\tau + d)^{2k}})$
= $p^{2k-1} G_{2k}(\tau) - B$

Therefore,

$$T_p G_{2k}(\tau) = C + B + G_{2k}(\tau)$$

= $(p^{2k-1} + 1)G_{2k}(\tau)$
= $\sigma_{2k-1}(p)G_{2k}(\tau)$

2. One proves first inductively $T_{p^r}G_{2k} = \sigma_{2k-1}(p^r)G_{2k}$. Suppose it's true for $\leq r-1$, Then

$$T_{p^{r}}G_{2k} = T_{p}T_{p^{r-1}}G_{2k} - p^{2k-1}T_{p^{r-2}}G_{2k}$$

= $T_{p}\sigma_{2k-1}(p^{r-1})G_{2k} - p^{2k-1}\sigma_{2k-1}(p^{r-2})G_{2k}$
= $(\sigma_{2k-1}(p)\sigma_{2k-1}(p^{r-1}) - p^{2k-1}\sigma_{2k-1}(p^{r-2}))G_{2k}$
= $\sigma_{2k-1}(p^{r})G_{2k}$

Then, for $n = p_1^{e_1} \cdots p_s^{e_s}$, we have $T_n G_{2k} = T_{p_1^{e_1}} \cdots T_{p_s^{e_s}} G_{2k} = \sigma_{2k-1}(p_1^{e_1}) \cdots \sigma_{2k-1}(p_s^{e_s}) G_{2k} = \sigma_{2k-1}(n) G_{2k}$, by direct verification.

3. One proves the following statement, and apply (2): If $f = \sum_{n=0}^{\infty} a_n q^n$ is a normalized eigenform, then $a_1(T_n f) = a_n$ for $n \in \mathbb{N}^+$

Proof. For prime p, we have $a_1(T_p f) = a_p + p^{2k-1}a_{\frac{1}{p}} = a_p$. We prove by induction that $a_1(T_{p^r}f) = a_{p^r}$:

$$a_{1}(T_{p^{r}}f) = a_{1}(T_{p^{r-1}}T_{r}f) - p^{2k-1}a_{1}(T_{p^{r-2}}f)$$

$$= a_{p^{r-1}}(T_{r}f) - p^{2k-1}a_{p^{r-2}}$$

$$= a_{p^{r}} + p^{2k-1}a_{p^{r-2}} - p^{2k-1}a_{p^{r-2}}$$

$$= a_{p^{r}}$$

for $r \nmid n$, suppose $a_1(T_n f) = a_n$, then,

$$a_1(T_{np^r}f) = a_1(T_nT_{p^r}f) = a_n$$
$$= a_n(a_{p^r}f) = a_na_{p^r}$$

Hence it's also true for np^r .

4.

$$L(s, F_{2k}) = \sum_{n=1}^{\infty} \frac{\sigma_{2k-1}(n)}{n^s} = \prod_p \sum_{r=0}^{\infty} \frac{\sigma_{2k-1}(p^r)}{p^{rs}}$$
$$= \prod_p \sum_r \frac{1+p^{2k-1}+\dots+p^{(2k-1)r}}{p^{rs}}$$
$$= \prod_p \sum_r \frac{1}{p^{2k-1}-1} (p^{(2k-1)r}p^{2k-1}-p^{-rs})$$
$$= \prod_p \frac{1}{(1-p^{-s})(1-p^{2k-1-s})}$$
$$= \zeta(s)\zeta(s-2k+1)$$

_		
-	-	-

4. (20 points) Let C be a non-hyperelliptic genus g curve, Let

$$\varphi_{\omega_C} = \varphi_{|\omega_C|} : C \hookrightarrow \mathbb{P}(H^0(C, \omega_C)) = \mathbb{P}^{g-1}$$

- 1. Suppose C is trigonal. So then there is an effective divisor D of degree 3 such that $h^0(\mathcal{O}_C(D)) = 2$. Show that $\varphi_{\omega_C}(D)$ gives you 3 collinear points in \mathbb{P}^{g-1} . Show that $I_{C/\mathbb{P}^{g-1}}$ can not be generated by quadrics.
- 2. Assume C is a smooth plane curve of degree 5, $\omega_C = \mathcal{O}_{\mathbb{P}^2}(2)|_C$. Let

$$\nu_2 = \varphi_{\mathcal{O}_{\mathbb{P}^2}(2)} : \mathbb{P}^2 \to \mathbb{P}^5.$$

Then $\nu_2(\mathbb{P}^2)$ is a degree 4 surface in \mathbb{P}^5 . Show that every quadric hypersurface containing C will also containing S.

Proof. 1. By Riemann Roch on curve, we have

$$l(D) - l(K - D) = \deg D + 1 - g = 4 - g$$

Hence l(K-D) = g-2, and that means D is collinear in the canonical embedding, otherwise l(K-D) = g-3. Assume Q is a quadric containing C, then, the 3 collinear points are contained in Q. Since degree Q = 2, the line L generated by the 3 point is contained in Q. If $I_{C/\mathbb{P}^{g-1}}$ are generated by quadrics, then we have $L \subset C$, which is impossible.

2. Let Q be a quadric not containing S, then $Q \cap S$ is a curve of degree $2 \times 4 = 8$ in \mathbb{P}^5 by Bezout. But $C \subset Q \cap S$ already has degree $2 \times 5 = 10 > 8$, therefore C is not contained in $Q \cap S$, not contained in Q.