THE NUMBER OF CRITICAL SUBGRAPHS IN K－CRITICAL GRAPHS

Online seminar

Speaker：Professor Ma Jie University of Science and Technology of China

Time：Thur，Mar．19th，15：00－16：00
Tencent Meeting ID： 840133293
Click the link and join the meeting：
https：／／meeting．tencent．com／s／5Aro7CFdd7051

Abstract：Gallai asked in 1984 if any $\$ k \$$－critical graph on $\$ n \$$ vertices contains at least $\$ n \$$ distinct $\$(k-1) \$$－critical subgraphs．The answer is trivial for $\$ k \operatorname{lleq} 3 \$$ ．Improving a result of Stiebitz，Abbott and Zhou proved in 1995 that for all $\$ \mathrm{k} \mid$ geq $4 \$$ ，any $\$ \mathbf{k} \$$－critical graph contains $\$ 10 \operatorname{mega}\left(\mathrm{n}^{\wedge}\{1 /(\mathrm{k}-1)\}\right) \$$ distinct $\$(\mathrm{k}-1) \$$－critical subgraphs．Since then no progress had been made until very recently，Hare resolved the case $\$ \mathrm{k}=4 \$$ by showing that any $\$ 4 \$$－critical graph on $\$ \mathrm{n} \$$ vertices contains at least $\$(8 n-29) / 3 \$$ odd cycles．

In this talk，we mainly focus on 4－critical graphs and develop some novel tools for counting cycles of specified parity．Our main result shows that any $\$ 4 \$$－critical graph on $\$ n \$$ vertices contains $\$ 1 O m e g a\left(n^{\wedge} 2\right) \$$ odd cycles，which is tight up to a constant factor by infinitely many graphs． As a crucial step，we prove the same bound for 3－connected non－bipartite graphs，which may be of independent interest．Using the tools，we also give a short solution to Gallai＇s problem when $\$ \mathrm{k}=4 \$$ ．Moreover，we improve the longstanding lower bound of Abbott and Zhou t $\$ \backslash \operatorname{mega}\left(\mathrm{n}^{\wedge}\{1 /(\mathrm{k}-2)\}\right) \$$ for the general case $\$ \mathrm{k} \backslash \mathrm{geq} 5 \$$ ．We will also discuss related problems on $\$ \mathrm{k} \$$－critical graphs．

