A Strengthening of Erd"os-Gallai Theorem and Proof of Woodall's Conjecture

Online seminar

Speaker: Prof. Binlong Li
Northwestern Polytechnical University

Time: Thur, Mar. 26th, 15:00-16:00
Tencent Meeting ID: 906882177
Click the link and join the meeting: https://meeting.tencent.com/s/5nF8tNH8bcb95

Abstract: For a 2-connected graph G on n vertices and two vertices x, y $\in \mathrm{V}(\mathrm{G})$, we prove that there is an (x, y)-path of length at least k if there are at least $(\mathrm{n}-1) / 2$ vertices in $\mathrm{V}(\mathrm{G}) \backslash\{\mathrm{x}, \mathrm{y}\}$ of degree at least k . This strengthens a well-known theorem due to Erd"os and Gallai in 1959. As the first application of this result, we show that a 2 -connected graph with n vertices contains a cycle of length at least 2 k if it has at least $\mathrm{n} / 2+\mathrm{k}$ vertices of degree at least k. This confirms a 1975 conjecture made by Woodall. As other applications, we obtain some results which generalize previous theorems of Dirac, Erd" os-Gallai, Bondy, and Fujisawa et al., present short proofs of the path case of Loebl-Koml' os-S' os Conjecture which was verified by Bazgan et al. and of a conjecture of Bondy on longest cycles (for large graphs) which was confirmed by Fraisse and Fournier, and make progress on a conjecture of Bermond.

