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1. INTRODUCTION

In this lecture, we consider a (Noetherian) commutative ring R with iden-
tity element.

I will assume that students know about basic definitions and properties
of rings, ideals, modules, morphisms (e.g. Chapter 1-3 of [1]). Our main
textbook is [2]. We will cover selected topics in order to serve the lecture of
geometry of syzygies ([2, Section 17-19]).

1.1. Nakayama’s lemma. The Jacobson radical J(R) of R is the intersec-
tion of all maximal ideals. Note that y € J(R) iff 1 — zy is a unit in R for
every ¢ € R.

Theorem 1.1 (Nakayama’s lemma). Let I be an ideal contained in the
Jacobson radical of R, and M a finitely generated R-module. If IM = M,
then M = 0.

Lemma 1.2. Let I be an R-ideal and M a finitely generated R-module. If
IM = M, then there exists y € I such that (1 —y)M = 0.

Proof. This is a consequence of the Caylay—Hamilton theorem. Consider
mi,..., My a set of generators in M, then there exists an n X n matrix
A with coefficients in I such that (mq,...,m,)T = A(mq,...,m,)T. Set
m = (my,...,my)T. Hence (I, — A)m = 0. Note that adj(I,, — A)(I,— A) =
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det(I,, — A)I,,, we know that det(I,, — A)m = 0, that is, det(l,, — A)ym; =0
for all 4. This implies that det(I, — A)M = 0. O

Example 1.3. If we do not assume that M is finitely generated, this is not
true. For example, consider R = k[[x]], M = k[[z,>]].

Corollary 1.4. Let I be an ideal contained in the Jacobson radical of R,
and M a finitely generated R-module. If N + 1M = M for some submodule
N C M, then M = N.

Proof. Apply Nakayama’s lemma to M/N. O

Corollary 1.5. Let (R,m) be a local ring and M a finitely generated R-
module. Consider my,...,my, € M. If my,...,my, € M/mM is a basis (as
a R/m-vector space), then my, ..., my, generates M (which is also a minimal
set of generators.)

Proof. Apply Corollary 1.4 to N the submodule generated by my, ..., my,.
O

1.2. Noetherian rings.

Definition 1.6 (Noetherian ring). A ring R is Noetherian if one of the
following equivalent conditions holds:

(1) Every non-empty set of ideals has a maximal element;

(2) The set of ideals satisfies the ascending chain condition (ACC);

(3) Every ideal is finitely generated.

In this lecture, we assume all rings are Noetherian and all modules are
finitely generated for simplicity.

Theorem 1.7 (Hilbert basis theorem). If R is Noetherian, then R[z| is
Noetherian.

Idea of proof. Consider I C Rx] an ideal. Consider J C R the leading
coefficients of I, then J is finitely generated. We may assume that J is
generated by the leading coefficients of fi,..., f, € R[z]. Take I’ be the
ideal generated by fi,..., fn, then it is easy to see that any f € I can be
written as f = f' 4+ g with f' € I’ and degg < max;{deg f;} =r. So

I=IN(RO&Rr@®--- @R 1)+ T

is finitely generated. (Check that I N (R @ Rz @ --- @ Ra""!) is finitely
generated!) O

Example 1.8. Any quotient of polynomial ring k[z1,...,x,]|/I is Noether-
ian.

1.3. Associated primes. We will use the notion (A : B) to define the set
{a | aB C A} whenever it makes sense. For example, if N,N' C M are
R-modules and I an ideal, then we can define (IV : I) as a submodule of M,
and (N’ : N) an ideal. Usually the set (0 : N) is denoted by ann(N) and
called the annihilator of N, that is, the set of elements whose multiplication
action kills N.

Definition 1.9 (Associated prime). A prime P of R is associated to M if
P = ann(z) for some z € M.
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Associated primes are important in the primary decomposition. But here
we mainly focus on its relation with zero-divisors.

Theorem 1.10. Let R be a Noetherian ring and M a finitely generated
R-module. Then the union of associated primes to M consists of zero and
zero-divisors. Moreover, there are only finitely many associated primes.

Proof. We want to show that

U ann(zx) = U ann(x).

ann(x):prime x#0
So it suffices to show that if ann(y) is maximal among all ann(z), then ann(y)
is prime. Consider rs € ann(y) such that s ¢ ann(y), then rsy = 0 but
sy # 0. We know that ann(y) C ann(sy), so equality holds by maximality.
This implies that r € ann(y).

To prove the finiteness, we only outline the idea here. Denote Ass(M) the
set of associated primes. Then it is not hard to see that for a short exact
sequence

0—-M - M-—M' -0,
we have
Ass(M') € Ass(M) C Ass(M') U Ass(M").
So inductively we get the finiteness. O

Remark 1.11. Another fact is that if P is a prime minimal among all primes
containing ann(M), then P is an associated prime.

Corollary 1.12. Let R be a Noetherian ring and M a finitely generated
R-module. Let I be an tdeal. Then either I contains a non zero-divisor on
M, or I annihilated a non-zero element of M.

Proof. Suppose that I contains only zero-divisors on M, then by Theo-
rem 1.10, I C Uppn(a):prime @10 (2). So the conclusion follows from the fol-
lowing easy lemma. O

Lemma 1.13. Let I be an ideal and let Pyi,..., P, be primes of R. If
I c Y, P, then I C P; for some i.

1.4. Tensor products and Tor. Let M, N be R-modules, the tensor prod-
uct M ® N is defined by the module generated by

{m®n|meMne N},
modulo relations
(m+m)@n=men+m @n;
men+n)=men+men
(rm)@n=m® (rn) =r(men)

form € M,n € N,r € R. It can be characterized by the universal property
that if f : M x N — P is an R-bilinear map, then there exists a unique
g: M ® N — P such that f factors through g.

Example 1.14. (1) M®@R~M, M®R"~M",
(2) M®@R/I ~ M/IM,
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(3) (M ®r N)p ~ Mp ®gr, Np.
Proposition 1.15. (— ® N) is a right-exact functor. If
M LM Mo
s a exact sequence of R-modules, then

MeoNI e N ES Mo N 0

15 exact.

Definition 1.16 (Flat module). N is flat if (— ® N) is an exact functor,
that is, if

0—-M —-M-—M"—0
is a exact sequence of R-modules, then
0>MeN—->MN—->M &N —0
is exact.

To study flatness, we need to introduce Tor from homological algebra.

Definition 1.17 (Projective module). An R-module M is projective if for
any surjective map f : Ny — No and any map g : M — Ns, there exists
h: M — Nj such that foh =g.

Example 1.18. Free modules are flat and projective.

Definition 1.19 (Complexes and homologies). A complex of R-modules is
a sequence of R-modules with (differential) homomorphisms
5 :
F "'—>Fi+1 —+1>FZL>F1_1—>

such that 0;0,41 = 0 for each i. Denote the homology to be H;(F) =
ker(0;)/im(d;+1). We say that F is exact at degree ¢ if Hj(F) = 0. A
morphism of complexes ¢ : F — G is given by ¢; : F; — G; commuting with
differentials, that is, we have a commutative diagram

./r : NN F1”i+1 FZ E—l
l¢i+l laﬁi ld’i—l
G: Git1 G; Gi1

This naturally gives morphisms between homologies ¢; : H;(F) — H;(G).

Definition 1.20 (Projective resolution). A projective resolution of an R-
module M is a complex of projective modules

Fiois By BN R
which is exact and coker(¢;) = M. Sometimes we also denote it by

]—':---—>Fn—>--~—>F1¢—1>F0(—>M—>0).
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Definition 1.21 (Left derived functor). Let T' be a right-exact functor.
Given a projective resolution of an R-module M:

]—":---—>Fn—>--~—>F1¢—1>F0(—>M—>0).

Define the left derived functor by L;T(M) := H;(TF), which is just the
homology of

TF: - = T(F,) — - —=T(F) = T(F)(—T(M)—0).
We collect basic properties of derived functors here.

Proposition 1.22. (1) LyT(M) =T(M);
(2) L;T(M) is independent of the choice of projective resolution;
(3) If M is projective, then L;T(M) =0 fori > 0.
(4) For a short exact sequence of R-modules

0—>A—-B—->C—0,

we have a long exact sequence

—> L3T(A) — L3T(B) — L3T(C)

— LQT(A) — LQT( ) — LQT(C)

— LlT(A) — L1T(B) —» LLT(C)
T(A) 0

Definition 1.23 (Tor). For an R-module N, Tor?(—, N) is defined by
L;T(—) where T = (— ® N).

—T(B)—>T(C)—

Remark 1.24. So to compute Tor (M, N), we should pick a projective res-
olution F of M and compute H; (.7-" ® N). Note that tensor products are
symmetrlc that is, M ® N ~ N ® M, it can be seen that Tor*(M, N) ~
Tor®(N, M), and Torf(M, N) can be also computed by pick a projective
resolutlon G of N and compute H;(M ® G).

Theorem 1.25. TFAE:

(1) N is flat;
(2) Torf(M,N) =0 for all i > 0 and all M;
(3) Torf (M N) =0 for all M.

Proof. (1) = (
compute H;(F @ N
for all ¢ > 0.

(2) = (3): trivial.

(3) = (1): this follows from the long exact sequence

2): take a projective resolution F of M, we need to
). As N is flat, F ® N is exact, hence Tor?(M, N) = 0

Tor{(M",N) = M@ N - M @N — M"® N — 0.
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2. KOSzZUL COMPLEXES AND REGULAR SEQUENCES
2.1. Regular sequences.

Definition 2.1 (Regular sequence). Let R be a ring and M an R-module.
A sequence of elements z1,...,x, € R is called a regular sequence on M (or
M -sequence) if

(1) (21, .- ) M £ M;

(2) For each 1 <i <n, z; is not a zero-divisor on M/(z1,...,x;—1)M.
Definition 2.2 (Depth). Let R be a ring, I an ideal, and M an R-module.
Suppose IM # M. The depth of I on M, depth(I, M), is defined by the
maximal length of M-sequences in [.

Remark 2.3. (1) If M = R, then simply denote depth I := depth(I, M).
(2) We will see soon (Theorem 2.15) that any maximal M-sequence has
the same length.

Example 2.4. If R = k[z1,...,x,], then x1,...,z, is a regular sequence.
We will see soon that depth(z1,...,z,) = n.

Remark 2.5. The depth measures the size of an ideal, and an element in the
regular sequence corresponds to a hypersurface in geometry. So a regular
sequence in I corresponds to a set of hypersurface containing V' (I) intersect-
ing each other “properly”. Consider for example R = k[z, y] or k[z,y]/(zy),

I'=(z,y).
2.2. Koszul complexes.

Definition 2.6 (Complexes and homologies). A complex of R-modules is a
sequence of R-modules with homomorphisms
f—)Mz_lsl—_%Mngz_‘_l%

such that §;0;_1 = 0 for each i. Denote the (co)homology to be H(F) =
ker(éz)/lm(éz,l)

We will introduce Koszul complexes and explain how regular sequences
are related to Koszul complexes.
Example 2.7 (Koszul complex of length 1). Given z € R. The Koszul
complex of length 1 is given by

K():0 RS R—0.

Note that HY(K (x)) = (0 : z), H*(K(z)) = R/xR. Then x is an R-sequence
if (1) H'(K(z)) # 0; (2) H(K(z)) = 0.

Example 2.8 (Koszul complex of length 2). Given z,y € R. The Koszul
complex of length 2 is given by

)

z

K(z,y):0 = R R®?2 (= v) R — 0.

Note that HY(K(x,y)) = (0 : (x,9)). H*(K(z,y)) = R/(z,y)R. We can
compute H'(K (z,y)) (Exercise). It turns out that if z is not a zero-divisor
in R, then H'(K(x,y)) ~ (z : y)/(x). So H'(K(x,y)) = 0 if and only if
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y is not a zero-divisor of R/(z). In conclusion, z,y is an R-sequence if (1)
H2(K(x,y)) # 0; (2) H(K(z,y)) = H'(K(z,y)) = 0.

Theorem 2.9. Let (R,m) be a local ring and x,y € m. Then x,y is a reqular
sequence iff H (K (x,y)) = 0. In particular, x,vy is a reqular sequence iff y, x
is a regular sequence.

Proof. This is not a direct consequence of the above argument, as we need
to show that z is a non-zero-divisor (equivalent to H°(K(z)) = 0). Write
K(z,y) as the following:

0 R—>R 0
X@ Y
0 R—-R 0.

Then this gives a short exact sequence of complexes

—X

K(x)[-1] : 0 R R 0.
Lo

K(z,y):0 R R? R 0
N

K(z):0 R—>R 0

That is,
0— K(x)[-1] = K(z,y) - K(x) — 0.
Then this induces a long exact sequences of homologies
HO(K(z)) = HO(K(x)) = H'(K(z,y)) = H'(K()).
So HY(K(z,y)) = 0 implies that yH°(K(z)) = H°(K(x)), which means

that HY(K(x)) = 0 by Nakayama’s lemma. O
Corollary 2.10. Let (R,m) be a local ring and x1,...,x, € m. Suppose
that x1,...,T, is a reqular sequence, then any permutation of x1,...,Ty, s

again a reqular sequence. (Ezercise.)
We will define Koszul complexes and show this correspondence in general.

Definition 2.11 (Exterior algebra). Let N be an R-module. Denote the
tensor algebra

T(N)=R&N&(NaN)&...
The exterior algebra AN = &, A" N is defined by T'(N) modulo the rela-
tions x ® z (and hence r®y+y®x) for x,y € N. The product of a,b € AN
is written as a A b.

Definition 2.12 (Koszul complex). Let N be an R-module, z € N. Define
the Koszul complex to be
2 ‘ : +1
K(x):O—>R—>N—>/\N—>~--—>/\ZNd—1> TN
where d, sends a to x Aa. If N ~ R" is a free module of rank n (we always

consider this situation) and = = (x1,...,z,) € R", then we denote K(z) by
K(z1,...,xp).
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Remark 2.13. (1) The R — N maps 1 to x.
(2) Consider N = R? (with basis e1, ep) and & = (1, x2), then A’N ~ R
(with bases e A e3), and the map N — AN is given by e; —
(r1e1 + woe2) Aep = —xgeq Aeg and ez — x1e1 A eg. In other words,

X —xry X1
K(x1,29) : 0 = R 2y R ( ) R 0.

Example 2.14. H"(K(z1,...,2,)) = R/(x1,...,2y). Consider the corre-
sponding complex

-1 +1

AN NENN AN N=0
Denote eq,...,e, to be a basis of N ~ R™, then the basis of A"N is just
e1 A+ Aey, and the basis of/\n_lN iser A NéAN-Nep, (1 <i<n). dy
maps e; A---AéA--Nep to (—1) 7 Lzey Ao+ Aey. Soimd, = (z1,...,2,)
and H"(K(x1,...,2y)) = R/(z1,...,Tp).
2.3. Koszul complexes versus regular sequences. Now we can state
the main theorem of this section.

Theorem 2.15. Let M be a finitely generated R-module. If

H/ (M @ K(x1,...,2,)) =0
forj<rand H' (M ® K(x1,...,z,)) # 0, then every mazimal M -sequence
in I = (z1,...,2,) C R has length r.

Idea of proof. Firstly, we consider the case that x1,...,zs is a maximal M-
sequence. In this case it is natural to prove this case by induction on n and
s.

In order to reduce the general case to this case, we consider yi,...,ys a
maximal M-sequence, and consider H/ (M @ K (Y1, ..., Ys,T1,...,Tn)).

So to deal with both cases, we need to investigate the relation between
K(y1,...,Ys, T1,...,2y) and K(x1,...,2,) and the relation of their homolo-
gies. ]

Corollary 2.16. Ifx1,. ..,y is an M-sequence, then H (MK (z1,...,1,)) =
0 forj <mn and H*"(M @ K(x1,...,2,)) = M/(x1,...,z,) M.

Proof. By definition, depth(I, M) > n, so H/(M ® K(z1,...,%,)) = 0 for
j < mn. On the other hand,
-1
H"(M @ K(x1,...,2,)) = coker(M @ \" N =M \"N)

-1
= M®coker(/\n N — /\nN)
=M®R/(x1,...,20) = M/(x1,...,2,)M.
Here we use the fact that M ® — is right-exact. O
Theorem 2.15 can be strengthen for local rings.

Theorem 2.17. Let (R,m) be a local ring, x1,...,x, € m. Let M be a
finitely generated R-module. If H*(M ® K(x1,...,1,)) = 0 for some k,
then H/(M @ K(z1,...,2,)) = 0 for all j < r. Moreover, if H" }(M ®
K(xi,...,2yn)) =0, then x1,...,x, is an M-sequence.
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Corollary 2.18. If R is local and (x1,...,2,) is a proper ideal containing
an M -sequence of length n, then x1,...,x, is an M-sequence.

Proof. H*(M ® K(x1,...,2y)) = M/(x1,...,2,)M # 0 by Nakayama’s
lemma. Take 7 minimal such that H"(M ® K(x1,...,2,)) # 0, then every
maximal M-sequence in (z1,...,2,) has length r, which implies that r > n.
So H""Y(M ® K(x1,...,2,)) =0 and z1, ..., 7, is an M-sequence. O

2.4. Operations on Koszul complexes.

Definition 2.19 (Tensor product of two complexes). Given two complexes

.7::-'-—>E£>Fi+1—>...;
g—>Gl£>GZ+1—>

define the tensor product

FoG:—» P FRec; ™ P FeG —..,

i+j=k i+j=k+1
P ®1 ifi =i+ 1;
where the map F; ® G; — Fy @ Gjris § (—1)'1®4; if 7/ = j +1; (Check
0 otherwise.

dd =0.)
Definition 2.20 (Shift). Given a complex
Fiooo B 2B

Denote F[n] to be the complex obtained by shifting F (to the left) n times.
That is, F[n]; = Fn+i, and the differential is multiplied by (—1)". Denote
R[n] to be the simple complex whose n-th position is R. Note that F[n] =
R[n]® F.

Definition 2.21 (Mapping cone). For y € R, consider F = K (y), that is,
F:0-R-L R0
Then there is a natural exact sequence of complexes
0— R[-1]—-F—R—0.
Tensoring a complex G, this gives an exact sequence
0—-g[-1]—-F®G—G—0.
Here F ® G is the mapping cone of the map G N g, in fact, it is given by

(1)t
G; Git1 Giyo —
\ ® x o N oo
Gi_1 G; Gi+1 I

From this exact sequence, we get a long exact sequence of homologies
- HY Q) L HTYG) - H(FoG) —» H(G) L ...
Here note that H=1(G) = H(G[-1]).
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Proposition 2.22. If N = N'® N", then AN=AN @ AN". Ifa’ € N
and " € N, take x = (2',2") € N, then K(z) = K(2') ® K (2").

Proof. Note that here the (skew-commutative) algebra structure of A N’ ®
A\ N" is given by

(a®b) A (d V) = (1) 5 ((a n d) & (bAY))

for homogenous elements. This is just linear algebra. It suffices to check
the differentials coincide, that is, for y' € AN, y" e AN", 2 A (v @y") =
(I, RI1I+1® l‘//) A (y/ ® y”) = (I, A y’) ® y’/ 4 (_1)degy'y/ ® (gj” A y//). ]

Corollary 2.23. If y1,...,y, are elements in (x1,...,x,) and M is an
R-module, then

H (M ® K(21,...,0y1, - 9) = H (M @ K(x1,...,2)) ® \ R’
as graded modules, which means that
. . k
H(MOK(1,...,20,y1,. ., 0) ~ @ H(MRK(21,...,20))® [\ R
k=i

So Hi(M®K(x1,...,:vn,y1,...,y7«)) =0 z'ﬁHj(M@)K(ml,...,xn)) =0
foranyi—r <j <i.

Proof. As y1,...,y, are elements in (x1,...,x,), there is an isomorphism
RPe®R ~R"®R"

sending (z1,...,Tn,Y1,.--,Yn) to (z1,...,2,,0,...,0). So by functoriality
of Koszul complex,

K(xi,...,¢n, Y1, yr) ~ K(z1,...,20,0,...,0)
~ K(z1,...,2,) @ K(0,...,0).
Here
K(0,...,00: 05 RS N'R S5 \N'R 0.
U
Corollary 2.24. If z = (2/,y) € N = N' & R, then K(x) is isomorphic to

the mapping cone of K(x') EN K(2'). In particular, we have a long exact
sequence

s H(Me K@) S H(M oK) - HYY (M @ K(z)) —
S HY (Mo K@) L HY (Mo K@) — ...

Proof. Note that N® R~ R®N’. Hence K(z) ~ K(y,2') = K(y) @ K(2').
This gives a short exact sequence

0— K(2')[-1] = K(z) = K(z') = 0.
Tensoring with M, we get
0> MeK@)[-1] - MeK()—MeK(') —0.
(Why exact?). O
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2.5. Proof of the main theorems. The following is a more precise ver-
sion.

Corollary 2.25. If x1,...,x; is an M-sequence, then
H (M @ K(x1,...,25)) = ((x1,...,2)M : (x1,...,2,))/(x1,...,2;)M.

In particular, in this case, H (MK (z1,...,2,)) = 0 forj <. IfIM # M
(I = (x1,...,2,)) and x1,...,2; is a mazimal M-sequence, then H'(M ®
K(ajla"'vxn)) 7&0

Proof. We do induction on 4. If ¢ = 0 this is trivial. If ¢ > 0, then we do
induction on n. If n = 4, this follows easily by Example 2.14. If n > 4, then
by Corollary 2.24, there is an exact sequence

H Y M@ K(z1,...,20-1)) = H(M @ K(21,...,2,)) —
- H(M @ K(z1,...,250-1)) = H(M @ K(21,...,Tn_1))
Here by induction,
Hi_l(M®K([E1, .. ;xn—1)> = ((.1'1, c. ,.%'Z‘_l)M : ((L‘l, e ,:I}n_1>)/((L‘1, c. ,J}i_l)M =0
as z; is not a zeo-divisor of M/(z1,...,z;—1)M (this also proves the second
statement). Hence H*(M ® K (x1,...,2y)) is just the kernel of
HZ(M ® K(xlv s 7$n—1)) x_n> HZ(M ® K(xla s 7$n—1))'
By induction,
HMK(x1,...,20-1)) = ((x1,...,2)M : (x1,...,20-1))/(21,...,2;)M,
so it easy to compute the kernel.
To show the last statement, note that I is contained in the set of zero-
divisors on M/(x1,...,z;)M, so I is contained in the union of associated

primes and hence I C ann(z) for some non-zero x € M/(x1,...,x2;)M by
Corollary 1.12. This implies that ((z1,...,z;))M : I)/(x1,...,2;)M # 0. O

Proof of Theorem 2.15. Let y1,...,ys be a maximal M-sequence and 7 be
the minimal such that

H' (M ® K(z1,...,2y)) #0.
The goal is to show that r = s.
By Corollary 2.23, r is the minimal such that
H' (M ® K(x1,...,Zn,Y1,..-,Ys)) # 0.

If IM # M, then by Corollary 2.25, r = s. So it suffices to show that IM #
M. This follows from Lemma 2.26(2) and the nonvanishing of homologies.
O

Lemma 2.26. (1) Ify € (z1,...,2n), then H(M ® K(x1,...,7,)) is
annihilated by y for any M and any j.
(2) If (x1,...,2n)M = M, then H (M ® K(x1,...,zy,)) =0 for any j.

Proof. (1) Here we give a different proof from the book (which uses dual
Koszul complex). Note that by Corollary 2.24, there is a long exact sequence

HI (MK (x1,...,20,y)) = H (MK (z1,...,2,)) % H(MQK (x1,...,2,)).
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So the statement is equivalent to that the first arrow is surjective. By the
proof of Corollary 2.23, this arrow splits.

(2) Replacing R by R/ann(M) will not change M @ K (x1,...,zy), so we
may assume that ann(M) = 0. By (z1,...,2,)M = M and Lemma 1.2,
there is y € (x1,...,2,) such that (1 —y)M = 0, which implies that y =
1€ (z1,...,25). Then apply (1). O

Proof of Theorem 2.17. We prove the first statement by induction on n.
Suppose H*¥(M @ K(z1,...,2,)) = 0, then by Corollary 2.24,

H"YM @ K(z1,...,001)) = H* " Y(M ® K(z1,...,20_1))
is surjective. Then by Nakayama’s lemma, H'(M®K(x1,...,2,-1)) = 0.
By induction, H/ (M ® K (z1,...,2n-1)) = 0 for j < k—1. By the long exact
sequence in Corollary 2.24, H' (M ® K(z1,...,xy,)) =0 for j <k —1.

We prove the second statement by induction on n. Suppose H" (M ®
K(x1,...,2,)) =0, then as above, H" 2(M ® K(x1,...,2,_1)) = 0, which

implies that x1,...,z,-1 is an M-sequence by induction. Then by Corol-

lary 2.25,

0=H"Y MK (z1,...,20)) = ((x1, ..., 0 1)M : (21,...,22))/(x1, ..., Tn_1)M,

which implies that z,, is not a zero-divisor of M/(x1,...,zp—1)M. O
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