

Coprime Mappings and Lonely Runners

Peng, Fei National University of Singapore

Time: Dec 20th, 14:00 - 15:00 Zoom meeting ID: 898 1138 0689 Password: 121323 Link: https://zoom.us/j/89811380689

Abstract:

The lonely runner conjecture can be stated as follows: for any n positive integers $v_1 < v_2 < ... < v_n$ there exists a real number t such that each $v_i t$ is at least 1/(n + 1) away from the nearest integer. In this paper we prove that this is true if $v_n < (2 - \varepsilon)n$. This is an approximate version of a natural next step for the study of the lonely runner conjecture suggested by Tao.

The key ingredient in our proof is a result on coprime mappings. Let *A* and *B* be sets of integers. A bijection $f : A \to B$ is a coprime mapping if *a* and f(a) are coprime for every $a \in A$. We show that if $A, B \subset [n]$ are intervals of length 2m where $m = \exp(\Omega((\log \log n)^2))$ then there exists a coprime mapping from *A* to *B*. This is based on joint work with Tom Bohman.