Coprime Mappings and Lonely Runners

Peng, Fei National University of Singapore

Time: Dec 20th, 14:00-15:00
Zoom meeting ID: 89811380689 Password: 121323
Link: https://zoom.us/j/89811380689

Abstract:

The lonely runner conjecture can be stated as follows: for any n positive integers $v_{1}<v_{2}<\ldots<v_{n}$ there exists a real number t such that each $v_{i} t$ is at least $1 /(n+1)$ away from the nearest integer. In this paper we prove that this is true if $v_{n}<(2-\varepsilon) n$. This is an approximate version of a natural next step for the study of the lonely runner conjecture suggested by Tao.

The key ingredient in our proof is a result on coprime mappings. Let A and B be sets of integers. A bijection $f: A \rightarrow B$ is a coprime mapping if a and $f(a)$ are coprime for every $a \in A$. We show that if $A, B \subset[n]$ are intervals of length $2 m$ where $m=\exp \left(\Omega\left((\log \log n)^{2}\right)\right)$ then there exists a coprime mapping from A to B. This is based on joint work with Tom Bohman.

