Specialization of stable rationality

Johannes Nicaise

Imperial College London and KU Leuven

17 June 2020, Fudan-SCMS Algebraic Geometry Seminar

This talk is based on ongoing project with John Christian Ottem.

Aim

specialization of stable birational types (N-Shinder)

+ tropical geometry

 \Rightarrow new examples of stably irrational complete intersections (quartic fivefold)

Definition

A complex algebraic variety X is called

- rational if it is birational to $\mathbb{P}^n_{\mathbb{C}}$, for some $n \ge 0$;
- stably rational if $X \times_{\mathbb{C}} \mathbb{P}^m_{\mathbb{C}}$ is rational, for some $m \ge 0$.

Stably rational \Rightarrow rational in dimension ≥ 3 (Beauville, Colliot-Thélène, Sansuc & Swinnerton-Dyer 1985).

We will study stable rationality of very general hypersurfaces $X \subset \mathbb{P}^{n+1}_{\mathbb{C}}$ of degree d.

9												
8												
7												
6												
5												
4												
3												
2												
d=1												
	n=1	2	3	4	5	6	7	8	9	10	11	12

9												
8												
7												
6												
5				To16								
4			IM71 CTP16	To16								
3			CG72	?\$?								
2												
d=1												
	n=1	2	3	4	5	6	7	8	9	10	11	12

Question

Are all smooth quartic hypersurfaces stably irrational?

We do not know any value of d such that a very general hypersurface of degree d is stably irrational in all dimensions.

Our results for hypersurfaces in $\mathbb{P}^{n+1}_{\mathbb{C}}$:

Theorem (N-Ottem)

- A very general quartic fivefold is stably irrational (+ small improvement of Schreieder's bound).
- Stable irrationality of a special quartic in dimension n − 1 implies stable irrationality of very general quartics in dimension n.
- Stable irrationality of a very general hypersurface of degree d and dimension n implies stable irrationality for (d + 1, n) and (d + 1, n + 1).
- Classification of stably irrational hypersurfaces in products of projective spaces up to dimension 5.

Some further results for stable irrationality of complete intersections:

Theorem (N-Ottem)

- Very general (2,3) complete intersection in P⁶_C (only open fourfold case besides cubic fourfold).
- **2** Very general (3,3) complete intersection in $\mathbb{P}^7_{\mathbb{C}}$.
- Schreieder-type bounds for complete intersections. Special case: very general complete intersection of r quadrics in P_C^{n+r} for n ≥ 4 and r ≥ n − 1

(extends results by Hassett, Pirutka & Tschinkel and Chatzistamatiou & Levine) These are special cases of more general specialization result for stably birational types.

Main ideas:

- "Nearby cycles functor" for stable birational types (N-Shinder 2019); every strictly toroidal degeneration yields obstruction to stable rationality of geometric generic fiber.
- Source of strictly toroidal degenerations: tropical geometry (Kushnirenko, Viro, Tevelev, Luxton & Qu).

Let F be a field.

Definition

Two integral *F*-schemes of finite type X, Y are called stably birational if

$$X \times_F \mathbb{P}_F^\ell \sim_{\mathrm{bir}} Y \times_F \mathbb{P}_F^m$$

for some $\ell, m \geq 0$.

Note: stably rational = stably birational to $\operatorname{Spec} F$.

- SB_F = set of stable birational equivalence classes of integral *F*-schemes of finite type
- For every *F*-scheme *X* of finite type, we set

$$[X]_{\mathrm{sb}} = [X_1]_{\mathrm{sb}} + \ldots + [X_r]_{\mathrm{sb}}$$
 in $\mathbb{Z}[\mathrm{SB}_F]$

where X_1, \ldots, X_r are the irreducible components of X.

• $\mathbb{Z}[SB_F]$ has natural ring structure:

$$[X]_{\rm sb} \cdot [Y]_{\rm sb} = [X \times_F Y]_{\rm sb}$$

Field of Puiseux series:

$$\mathbb{C}\{\!\{t\}\!\} = \bigcup_{m>0} \mathbb{C}(\!(t^{1/m})\!)$$

Valuation ring:

$$\mathbb{C}\{\!\{t\}\}^o = \bigcup_{m>0} \mathbb{C}\llbracket t^{1/m}\rrbracket$$

A $\mathbb{C}\{\{t\}\}^o$ -scheme of finite type is called strictly toroidal if Zariski-locally, \mathscr{X} admits a smooth morphism

$$\mathscr{X} \to \operatorname{Spec} \mathbb{C}\{\!\{t\}\!\}^o[M]/(\chi^m - t^q)$$

where

- *M* is a toric monoid,
- $q\in \mathbb{Q}_{>0}$,
- $m \in M$ such that $\mathbb{C}[M]/(\chi^m)$ is reduced.

Examples

Strictly semi-stable models: Zariski-locally smooth over

Spec
$$\mathbb{C}\left\{\left\{t\right\}\right\}^{o}[z_0,\ldots,z_n]/(z_0\cdot\ldots\cdot z_n-t^q)$$
.

Every smooth and proper $\mathbb{C}\{\{t\}\}\$ -scheme admits a strictly semi-stable proper $\mathbb{C}\{\{t\}\}^o$ -model.

General f ∈ C[z₀,..., z_n] homogeneous of degree d; general g₁,..., g_r ∈ C[z₀,..., z_n] homogeneous of degrees d₁ + ... + d_r = d. Then

$$\operatorname{Proj} \mathbb{C}\{\!\{t\}\}^o[z_0,\ldots,z_n]/(tf-g_1\cdot\ldots\cdot g_r)$$

is strictly toroidal.

If \mathscr{X} is a strictly toroidal $\mathbb{C}\{\{t\}\}^o$ -scheme, a stratum E of $\mathscr{X}_{\mathbb{C}}$ is a connected component of an intersection of irreducible components of $\mathscr{X}_{\mathbb{C}}$.

 $\operatorname{codim}(E)$: codimension of E in $\mathscr{X}_{\mathbb{C}}$.

Theorem (N-Shinder 2019)

There exists a unique ring morphism

$$\mathrm{Vol} \colon \mathbb{Z}[\mathrm{SB}_{\mathbb{C}\{\!\{t\}\!\}}] \to \mathbb{Z}[\mathrm{SB}_{\mathbb{C}}]$$

such that for every strictly toroidal proper $\mathbb{C}\{\{t\}\}^{\circ}$ -scheme \mathscr{X} ,

$$\operatorname{Vol}([\mathscr{X}_{\mathbb{C}\{\{t\}\}}]_{\mathrm{sb}}) = \sum_{E} (-1)^{\operatorname{codim}(E)}[E]_{\mathrm{sb}}.$$

Proof relies on weak factorization and logarithmic geometry.

Vol sends $[\operatorname{Spec} \mathbb{C}\{\{t\}\}]_{\operatorname{sb}}$ to $[\operatorname{Spec} \mathbb{C}]_{\operatorname{sb}} \rightsquigarrow \operatorname{obstruction}$ to stable rationality of $\mathscr{X}_{\mathbb{C}\{\{t\}\}}$.

If $\mathscr X$ is a smooth and proper $\mathbb C\{\!\{t\}\!\}^o\text{-scheme, then formula simplifies to}$

$$\operatorname{Vol}([\mathscr{X}_{\mathbb{C}\{\{t\}\}}]_{\mathrm{sb}}) = [\mathscr{X}_{\mathbb{C}}]_{\mathrm{sb}}.$$

Corollary

Stable rationality of geometric fibers specializes in smooth and proper families in characteristic zero.

More precisely:

Theorem (N-Shinder 2019)

S Noetherian \mathbb{Q} -scheme, $f: X \to S$ smooth and proper morphism. Then

 $\{s \in S \mid geometric \ fiber \ of \ f \ over \ s \ is \ stably \ rational \}$

is a countable union of closed subsets of S.

Strengthened to rationality by Kontsevich & Tschinkel.

We now discuss a basic application where the obstruction does not vanish.

Theorem (Voisin 2015)

A very general quartic double threefold over \mathbb{C} is stably irrational.

Proof. Artin-Mumford: \exists stably irrational quartic double threefold Y/\mathbb{C} with isolated ordinary double point singularities.

Putting the ramification divisor in a general pencil we get a double cover $\mathscr{Y} \to \mathbb{P}^3_{\mathbb{C}[t]}$ with special fiber Y and whose generic fiber is a smooth quartic double threefold.

Let $\mathscr{Y}' \to \mathscr{Y}$ be the blow-up at the singular locus of Y, and let \mathscr{X} be the normalization of $\mathscr{Y}' \times_{\mathbb{C}[t]} \mathbb{C}\{\{t\}\}^o$.

Then \mathscr{X} is strictly toroidal and its generic fiber $\mathscr{X}_{\mathbb{C}\{\{t\}\}}$ is a smooth quartic double threefold over $\mathbb{C}\{\{t\}\}$.

The special fiber $\mathscr{X}_{\mathbb{C}}$ has exactly one stably irrational stratum, namely, the strict transform of the Artin-Mumford threefold Y.

Thus

$$\sum_{\textit{\textit{E}}} (-1)^{\operatorname{codim}(\textit{\textit{E}})}[\textit{\textit{E}}]_{\operatorname{sb}} \neq [\operatorname{Spec} \mathbb{C}]_{\operatorname{sb}} \quad \text{in } \mathbb{Z}[\operatorname{SB}_{\mathbb{C}}]$$

and $\mathscr{X}_{\mathbb{C}\{\{t\}\}}$ is not stably rational.

Our specialization theorem now implies that a very general double quartic threefold over $\mathbb C$ is not stably rational.

To apply this method to generate new applications, we need a rich source of strictly toroidal degenerations \rightsquigarrow tropical geometry.

•
$$f = \sum_{m \in \mathbb{Z}^{n+1}} c_m x^m$$
 Laurent polynomial in $\mathbb{C}[\mathbb{Z}^{n+1}]$

•
$$\operatorname{Supp}(f) = \{m \in \mathbb{Z}^{n+1} \mid c_m \neq 0\}$$

• Newton polytope $\Delta_f = \text{convex hull of } \text{Supp}(f)$ in \mathbb{R}^{n+1}

•
$$Z(f) = \text{zero locus of } f \text{ in } \mathbb{G}_{m,\mathbb{C}}^{n+1} = \operatorname{Spec} \mathbb{C}[\mathbb{Z}^{n+1}]$$

Example: quartic double curve $y^2 = f_4(x)$.

Δ lattice polytope in \mathbb{R}^{n+1}

 ${\mathscr P}$ polyhedral subdivision of Δ into lattice polytopes

Definition

We say that \mathscr{P} is regular if there exists a convex piecewise affine function $\Delta \to \mathbb{R}$ whose domains of linearity are the maximal faces of \mathscr{P} .

Figure: Regular subdivision of a polytope

Assume that \mathscr{P} is regular.

Consider

$$\mathbb{Z}^{n+1} \cap \Delta \to \mathbb{C}, \ m \mapsto c_m$$

such that $c_m \neq 0$ for every vertex in \mathscr{P} .

For every face δ of \mathscr{P} , set

$$f_{\delta} = \sum_{\mathbb{Z}^{n+1} \cap \delta} c_m x^m.$$

Then $\Delta_{f_{\delta}} = \delta$. Assume that $Z(f_{\delta})$ is smooth for all δ .

Main Theorem (N-Ottem)

lf

$$\sum_{\delta
ot \subset \partial \Delta} (-1)^{\operatorname{codim}(\delta)} [Z(f_{\delta})]_{\operatorname{sb}}
eq [\operatorname{Spec} \mathbb{C}]_{\operatorname{sb}}$$

in $\mathbb{Z}[SB_{\mathbb{C}}]$, then a very general hypersurface in $\mathbb{G}_{m,\mathbb{C}}^{n+1}$ with Newton polytope Δ is not stably rational.

Idea of proof: by our specialization theorem, it is enough to find one non-degenerate polynomial f over $\mathbb{C}\{\{t\}\}$ with Newton polytope Δ such that Z(f) is not stably rational.

One can build from our tropical data a strictly toroidal $\mathbb{C}\{\{t\}\}^{o}$ -model \mathscr{X} such that $\mathscr{X}_{\mathbb{C}\{\{t\}\}}$ is a toroidal compactification of a non-degenerate hypersurface Z(f) and the strata in $\mathscr{X}_{\mathbb{C}}$ are toroidal compactifications of the hypersurfaces $Z(f_{\delta})$ with $\delta \not\subset \partial \Delta$.

Newton polytope of general quartic fivefold:

$$\Delta = \{(x_1,\ldots,x_6) \in \mathbb{R}^6_{\geq 0} \mid \sum_i x_i \leq 4\}$$

Subdivision \mathscr{P} : insert face

$$\delta_0: \quad x_1 + x_2 + x_3 + x_4 + x_5 + 2x_6 = 4$$

(quartic double fourfold)

 \rightsquigarrow two isomorphic pieces δ_1 , δ_2 , intersecting along δ_0 .

Figure: Newton polytope of general quartic surface containing Newton polytope of quartic double curve

If we choose symmetric coefficients c_m for f_{δ_1} and f_{δ_2} , then

$$\sum_{\delta \not\subset \partial \Delta} (-1)^{\operatorname{codim}(\delta)} [Z(f_{\delta})]_{\operatorname{sb}} = [Z(f_{\delta_1})]_{\operatorname{sb}} + [Z(f_{\delta_2})]_{\operatorname{sb}} - [Z(f_{\delta_0})]_{\operatorname{sb}}$$

$$= 2[Z(f_{\delta_1})]_{\rm sb} - [Z(f_{\delta_0})]_{\rm sb}$$

$$\equiv [Z(f_{\delta_0})]_{\mathrm{sb}} \mod 2\mathbb{Z}[\mathrm{SB}_{\mathbb{C}}].$$

But δ_0 is the Newton polytope of a quartic double fourfold, so that $[Z(f_{\delta_0})]_{sb} \neq [\operatorname{Spec} \mathbb{C}]_{sb}$ (Hassett-Pirutka-Tschinkel 2019).