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1. INTRODUCTION

In this lecture, we consider a (Noetherian) commutative ring R with iden-
tity element.

I will assume that students know about basic definitions and properties
of rings, ideals, modules, morphisms (e.g. Chapter 1-3 of [1]). Our main
textbook is [2]. We will cover selected topics in order to serve the lecture of
geometry of syzygies ([2, Section 17-19]).

1.1. Nakayama’s lemma. The Jacobson radical J(R) of R is the intersec-
tion of all maximal ideals. Note that y € J(R) iff 1 — zy is a unit in R for
every x € R.

Theorem 1.1 (Nakayama’s lemma). Let I be an ideal contained in the
Jacobson radical of R, and M a finitely generated R-module. If IM = M,
then M = 0.

Lemma 1.2. Let I be an R-ideal and M a finitely generated R-module. If
IM = M, then there exists y € I such that (1 —y)M = 0.

Proof. This is a consequence of the Caylay-Hamilton theorem. Consider
mi,..., My a set of generators in M, then there exists an n X n matrix
A with coefficients in I such that (my,...,m,)T = A(mq,...,m,)T. Set
m = (mq,...,m,)". Hence (I, — A)m = 0. Note that adj(I,, — A)(I,— A) =
det(I,, — A)I,, we know that det(I,, — A)m = 0, that is, det(l,, — A)m; =0
for all 4. This implies that det(Z,, — A)M = 0. O

Example 1.3. If we do not assume that M is finitely generated, this is not
true. For example, consider R = k[[x]], M = k[[z,>~]].

Corollary 1.4. Let I be an ideal contained in the Jacobson radical of R,
and M a finitely generated R-module. If N+ 1M = M for some submodule
N C M, then M = N.
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Proof. Apply Nakayama’s lemma to M /N. O

Corollary 1.5. Let (R,m) be a local ring and M a finitely generated R-
module. Consider my,...,my, € M. If my,...,my, € M/mM is a basis (as
a R/m-vector space), then my, ..., my, generates M (which is also a minimal
set of generators.)

Proof. Apply Corollary 1.4 to N the submodule generated by my, ..., my,.
O

1.2. Noetherian rings.

Definition 1.6 (Noetherian ring). A ring R is Noetherian if one of the
following equivalent conditions holds:

(1) Every non-empty set of ideals has a maximal element;

(2) The set of ideals satisfies the ascending chain condition (ACC);
(3) Every ideal is finitely generated.

In this lecture, we assume all rings are Noetherian and all modules are
finitely generated for simplicity.

Theorem 1.7 (Hilbert basis theorem). If R is Noetherian, then R[z| is
Noetherian.

Idea of proof. Consider I C R|x] an ideal. Consider J C R the leading
coefficients of I, then J is finitely generated. We may assume that J is
generated by the leading coefficients of fi,..., f, € R[z]. Take I’ be the
ideal generated by fi,..., fn, then it is easy to see that any f € I can be
written as f = f' + g with f’ € I’ and deg g < max;{deg f;} = . So

I=IN(R®Rzx®---ORx" )+ T

is finitely generated. (Check that I N (R @ Rx @ --- @ Ra" 1) is finitely
generated!) O

Example 1.8. Any quotient of polynomial ring k[z1,...,x,]|/I is Noether-
ian.

1.3. Associated primes. We will use the notion (A : B) to define the set
{a | aB C A} whenever it makes sense. For example, if N,N' C M are
R-modules and I an ideal, then we can define (IV : I) as a submodule of M,
and (N’ : N) an ideal. Usually the set (0 : N) is denoted by ann(N) and
called the annihilator of N, that is, the set of elements whose multiplication
action kills .

Definition 1.9 (Associated prime). A prime P of R is associated to M if
P = ann(z) for some x € M.

Associated primes are important in the primary decomposition. But here
we mainly focus on its relation with zero-divisors.

Theorem 1.10. Let R be a Noetherian ring and M a finitely generated
R-module. Then the union of associated primes to M consists of zero and
zero-divisors. Moreover, there are only finitely many associated primes.



COMMUTATIVE ALGEBRA NOTES 3

Proof. We want to show that
U ann(zx) = U ann(x).
ann(x):prime x#0

So it suffices to show that if ann(y) is maximal among all ann(z), then ann(y)
is prime. Consider rs € ann(y) such that s ¢ ann(y), then rsy = 0 but
sy # 0. We know that ann(y) C ann(sy), so equality holds by maximality.
This implies that r € ann(y).

To prove the finiteness, we only outline the idea here. Denote Ass(M) the
set of associated primes. Then it is not hard to see that for a short exact
sequence

0— M — M- M —0,
we have
Ass(M") € Ass(M) C Ass(M') U Ass(M").
So inductively we get the finiteness. U

Remark 1.11. Another fact is that if P is a prime minimal among all primes
containing ann(M), then P is an associated prime.

Corollary 1.12. Let R be a Noetherian ring and M a finitely generated
R-module. Let I be an ideal. Then either I contains a non zero-divisor on
M, or I annihilated a non-zero element of M.

Proof. Suppose that I contains only zero-divisors on M, then by Theo-
rem 1.10, I C Uunn(z):prime @00 (2). So the conclusion follows from the fol-
lowing easy lemma. O

Lemma 1.13. Let I be an ideal and let Pi,..., P, be primes of R. If
I Cc\J; P, then I C P; for some i.

1.4. Tensor products and Tor. Let M, N be R-modules, the tensor prod-
uct M ® N is defined by the module generated by

{m®n|me M,ne N},
modulo relations
(m+m)@n=men+m @n;
men+n)=men+men
(rm)@n=m® (rn) =r(men)
form € M,n € N,r € R. It can be characterized by the universal property
that if f: M x N — P is an R-bilinear map, then there exists a unique
g: M ® N — P such that f factors through g.
Example 1.14. (1) M®@R~M, M®R">~M",
(2) M®@R/I ~ M/IM,
(3) (M ®r N)p ~ Mp ®p, Np.
Proposition 1.15. (— ® N) is a right-exact functor. If
M LS Mo
is a exact sequence of R-modules, then

MaoNI e N EY Mo N 0
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18 exact.
Definition 1.16 (Flat module). N is flat if (— ® N) is an exact functor,
that is, if
0—-M —-M-—M"—0
is a exact sequence of R-modules, then
0-M&N-—->MN-—->M' &N —0

is exact.
To study flatness, we need to introduce Tor from homological algebra.

Definition 1.17 (Projective module). An R-module M is projective if for
any surjective map f : Ny — Ny and any map g : M — Ns, there exists
h: M — Nj such that foh =g.

Example 1.18. Free modules are flat and projective.
Definition 1.19 (Complexes and homologies). A complez of R-modules is
a sequence of R-modules with (differential) homomorphisms

oi 8;
.F:--'—>Fi+1i1>Fi—>Fi_1—>...

such that 0;0,41 = 0 for each i. Denote the homology to be H;(F) =
ker(d;)/im(d;+1). We say that F is ezact at degree i if H;(F) = 0. A
morphism of complexes ¢ : F — G is given by ¢; : F; — G; commuting with
differentials, that is, we have a commutative diagram

F: NN F’i+1 Fl Fi,1
\L¢i+l \L@ \L¢i1
G: Git1 G; Gi—1

This naturally gives morphisms between homologies ¢; : H;(F) — H;(G).

Definition 1.20 (Projective resolution). A projective resolution of an R-
module M is a complex of projective modules

Fiois By BN R

which is exact and coker(¢;) = M. Sometimes we also denote it by
Fioo s Fy oo B 25 Fy(— M = 0).

Definition 1.21 (Left derived functor). Let T' be a right-exact functor.

Given a projective resolution of an R-module M:
]-':---—>Fn—>---—>F1¢—1>F0(—>M—>O).

Define the left derived functor by L;T(M) := H;(TJF), which is just the
homology of

TF: - = T(F,) — - —=T((F) = T(F)(—T(M)—0).
We collect basic properties of derived functors here.

Proposition 1.22. (1) LyT(M) =T(M);
(2) L;T(M) is independent of the choice of projective resolution;
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(3) If M is projective, then L;T(M) =0 fori > 0.
(4) For a short exact sequence of R-modules
0>A—-B—->C=—0,

we have a long exact sequence

T(A) =

Definition 1.23 (Tor). For an R-module N, Torf(—, N) is defined by
L;T(—) where T'= (— ® N).

T(B) = T(C)—0.

Remark 1.24. So to compute Tor (M, N), we should pick a projective res-
olution F of M and compute H; (]: ® N). Note that tensor products are
symmetrlc that is, M ® N ~ N ® M, it can be seen that Tor?(M, N) ~
Tor®(N, M), and Tor?(M, N) can be also computed by pick a projective
resolutlon G of N and compute H;(M ® G).

Theorem 1.25. TFAE:

(1) N is flat;

(2) Tor(M,N) =0 for all i > 0 and all M;
(3) Torft (M N) =0 for all M.
(

Proof. (1) == (2): take a projective resolution F of M, we need to
compute H;(F ® N). As N is flat, F ® N is exact, hence Tor?(M, N) = 0
for all © > 0.

(2) = (3): trivial.

(3) = (1): this follows from the long exact sequence

Torf(M",N) = M@ N -+ M@N - M" @ N — 0.

REFERENCES

[1] Atiyah, MacDonald, Introduction to commutative algebra.
[2] Eisenbud, Commutative algebra with a view toward algebraic geometry.

Shanghai Center for Mathematical Sciences, Fudan University, Jiangwan Campus, 2005
Songhu Road, Shanghai, 200438, China
E-mail address: chenjiang@fudan.edu.cn



