COMMUTATIVE ALGEBRA NOTES

CHEN JIANG

Contents

1. Introduction 1
1.1. Nakayama's lemma 1
1.2. Noetherian rings 2
1.3. Associated primes 2
1.4. Tensor products and Tor 3
References 5

1. Introduction

In this lecture, we consider a (Noetherian) commutative ring R with identity element.

I will assume that students know about basic definitions and properties of rings, ideals, modules, morphisms (e.g. Chapter $1-3$ of [1]). Our main textbook is [2]. We will cover selected topics in order to serve the lecture of geometry of syzygies ([2, Section 17-19]).
1.1. Nakayama's lemma. The Jacobson radical $J(R)$ of R is the intersection of all maximal ideals. Note that $y \in J(R)$ iff $1-x y$ is a unit in R for every $x \in R$.

Theorem 1.1 (Nakayama's lemma). Let I be an ideal contained in the Jacobson radical of R, and M a finitely generated R-module. If $I M=M$, then $M=0$.

Lemma 1.2. Let I be an R-ideal and M a finitely generated R-module. If $I M=M$, then there exists $y \in I$ such that $(1-y) M=0$.

Proof. This is a consequence of the Caylay-Hamilton theorem. Consider m_{1}, \ldots, m_{n} a set of generators in M, then there exists an $n \times n$ matrix A with coefficients in I such that $\left(m_{1}, \ldots, m_{n}\right)^{T}=A\left(m_{1}, \ldots, m_{n}\right)^{T}$. Set $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)^{T}$. Hence $\left(I_{n}-A\right) \mathbf{m}=0$. Note that $\operatorname{adj}\left(I_{n}-A\right)\left(I_{n}-A\right)=$ $\operatorname{det}\left(I_{n}-A\right) I_{n}$, we know that $\operatorname{det}\left(I_{n}-A\right) \mathbf{m}=0$, that is, $\operatorname{det}\left(I_{n}-A\right) m_{i}=0$ for all i. This implies that $\operatorname{det}\left(I_{n}-A\right) M=0$.

Example 1.3. If we do not assume that M is finitely generated, this is not true. For example, consider $R=k[[x]], M=k\left[\left[x, x^{-1}\right]\right]$.
Corollary 1.4. Let I be an ideal contained in the Jacobson radical of R, and M a finitely generated R-module. If $N+I M=M$ for some submodule $N \subset M$, then $M=N$.

Proof. Apply Nakayama's lemma to M / N.
Corollary 1.5. Let (R, \mathfrak{m}) be a local ring and M a finitely generated R module. Consider $m_{1}, \ldots, m_{n} \in M$. If $\bar{m}_{1}, \ldots, \bar{m}_{n} \in M / \mathfrak{m} M$ is a basis (as a R / \mathfrak{m}-vector space), then m_{1}, \ldots, m_{n} generates M (which is also a minimal set of generators.)

Proof. Apply Corollary 1.4 to N the submodule generated by m_{1}, \ldots, m_{n}.

1.2. Noetherian rings.

Definition 1.6 (Noetherian ring). A ring R is Noetherian if one of the following equivalent conditions holds:
(1) Every non-empty set of ideals has a maximal element;
(2) The set of ideals satisfies the ascending chain condition (ACC);
(3) Every ideal is finitely generated.

In this lecture, we assume all rings are Noetherian and all modules are finitely generated for simplicity.

Theorem 1.7 (Hilbert basis theorem). If R is Noetherian, then $R[x]$ is Noetherian.

Idea of proof. Consider $I \subset R[x]$ an ideal. Consider $J \subset R$ the leading coefficients of I, then J is finitely generated. We may assume that J is generated by the leading coefficients of $f_{1}, \ldots, f_{n} \in R[x]$. Take I^{\prime} be the ideal generated by f_{1}, \ldots, f_{n}, then it is easy to see that any $f \in I$ can be written as $f=f^{\prime}+g$ with $f^{\prime} \in I^{\prime}$ and $\operatorname{deg} g<\max _{i}\left\{\operatorname{deg} f_{i}\right\}=r$. So

$$
I=I \cap\left(R \oplus R x \oplus \cdots \oplus R x^{r-1}\right)+I^{\prime}
$$

is finitely generated. (Check that $I \cap\left(R \oplus R x \oplus \cdots \oplus R x^{r-1}\right)$ is finitely generated!)

Example 1.8. Any quotient of polynomial ring $k\left[x_{1}, \ldots, x_{n}\right] / I$ is Noetherian.
1.3. Associated primes. We will use the notion $(A: B)$ to define the set $\{a \mid a B \subset A\}$ whenever it makes sense. For example, if $N, N^{\prime} \subset M$ are R-modules and I an ideal, then we can define $(N: I)$ as a submodule of M, and $\left(N^{\prime}: N\right)$ an ideal. Usually the set $(0: N)$ is denoted by $\operatorname{ann}(N)$ and called the annihilator of N, that is, the set of elements whose multiplication action kills N.

Definition 1.9 (Associated prime). A prime P of R is associated to M if $P=\operatorname{ann}(x)$ for some $x \in M$.

Associated primes are important in the primary decomposition. But here we mainly focus on its relation with zero-divisors.

Theorem 1.10. Let R be a Noetherian ring and M a finitely generated R-module. Then the union of associated primes to M consists of zero and zero-divisors. Moreover, there are only finitely many associated primes.

Proof. We want to show that

$$
\bigcup_{\operatorname{ann}(x) \text { :prime }} \operatorname{ann}(x)=\bigcup_{x \neq 0} \operatorname{ann}(x) .
$$

So it suffices to show that if ann (y) is maximal among all ann (x), then $\operatorname{ann}(y)$ is prime. Consider $r s \in \operatorname{ann}(y)$ such that $s \notin \operatorname{ann}(y)$, then $r s y=0$ but $s y \neq 0$. We know that $\operatorname{ann}(y) \subset \operatorname{ann}(s y)$, so equality holds by maximality. This implies that $r \in \operatorname{ann}(y)$.

To prove the finiteness, we only outline the idea here. Denote $\operatorname{Ass}(M)$ the set of associated primes. Then it is not hard to see that for a short exact sequence

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0,
$$

we have

$$
\operatorname{Ass}\left(M^{\prime}\right) \subset \operatorname{Ass}(M) \subset \operatorname{Ass}\left(M^{\prime}\right) \cup \operatorname{Ass}\left(M^{\prime \prime}\right)
$$

So inductively we get the finiteness.
Remark 1.11. Another fact is that if P is a prime minimal among all primes containing ann (M), then P is an associated prime.
Corollary 1.12. Let R be a Noetherian ring and M a finitely generated R-module. Let I be an ideal. Then either I contains a non zero-divisor on M, or I annihilated a non-zero element of M.

Proof. Suppose that I contains only zero-divisors on M, then by Theorem 1.10, $I \subset \bigcup_{\text {ann }(x) \text { :prime }} \operatorname{ann}(x)$. So the conclusion follows from the following easy lemma.
Lemma 1.13. Let I be an ideal and let P_{1}, \ldots, P_{n} be primes of R. If $I \subset \bigcup_{i} P_{i}$, then $I \subset P_{i}$ for some i.
1.4. Tensor products and Tor. Let M, N be R-modules, the tensor product $M \otimes N$ is defined by the module generated by

$$
\{m \otimes n \mid m \in M, n \in N\},
$$

modulo relations

$$
\begin{aligned}
& \left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n ; \\
& m \otimes\left(n+n^{\prime}\right)=m \otimes n+m \otimes n^{\prime} ; \\
& (r m) \otimes n=m \otimes(r n)=r(m \otimes n)
\end{aligned}
$$

for $m \in M, n \in N, r \in R$. It can be characterized by the universal property that if $f: M \times N \rightarrow P$ is an R-bilinear map, then there exists a unique $g: M \otimes N \rightarrow P$ such that f factors through g.
Example 1.14. (1) $M \otimes R \simeq M, M \otimes R^{n} \simeq M^{n}$;
(2) $M \otimes R / I \simeq M / I M$;
(3) $\left(M \otimes_{R} N\right)_{P} \simeq M_{P} \otimes_{R_{P}} N_{P}$.

Proposition 1.15. $(-\otimes N)$ is a right-exact functor. If

$$
M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \rightarrow 0
$$

is a exact sequence of R-modules, then

$$
M^{\prime} \otimes N \xrightarrow{f \otimes 1} M \otimes N \xrightarrow{g \otimes 1} M^{\prime \prime} \otimes N \rightarrow 0
$$

is exact.
Definition 1.16 (Flat module). N is flat if $(-\otimes N)$ is an exact functor, that is, if

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

is a exact sequence of R-modules, then

$$
0 \rightarrow M^{\prime} \otimes N \rightarrow M \otimes N \rightarrow M^{\prime \prime} \otimes N \rightarrow 0
$$

is exact.
To study flatness, we need to introduce Tor from homological algebra.
Definition 1.17 (Projective module). An R-module M is projective if for any surjective map $f: N_{1} \rightarrow N_{2}$ and any map $g: M \rightarrow N_{2}$, there exists $h: M \rightarrow N_{1}$ such that $f \circ h=g$.
Example 1.18. Free modules are flat and projective.
Definition 1.19 (Complexes and homologies). A complex of R-modules is a sequence of R-modules with (differential) homomorphisms

$$
\mathcal{F}: \cdots \rightarrow F_{i+1} \xrightarrow{\delta_{i+1}} F_{i} \xrightarrow{\delta_{i}} F_{i-1} \rightarrow \ldots
$$

such that $\delta_{i} \delta_{i+1}=0$ for each i. Denote the homology to be $H_{i}(\mathcal{F})=$ $\operatorname{ker}\left(\delta_{i}\right) / \operatorname{im}\left(\delta_{i+1}\right)$. We say that \mathcal{F} is exact at degree i if $H_{i}(\mathcal{F})=0$. A morphism of complexes $\phi: \mathcal{F} \rightarrow \mathcal{G}$ is given by $\phi_{i}: F_{i} \rightarrow G_{i}$ commuting with differentials, that is, we have a commutative diagram

This naturally gives morphisms between homologies $\phi_{i}: H_{i}(\mathcal{F}) \rightarrow H_{i}(\mathcal{G})$.
Definition 1.20 (Projective resolution). A projective resolution of an R module M is a complex of projective modules

$$
\mathcal{F}: \cdots \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \xrightarrow{\phi_{1}} F_{0}
$$

which is exact and $\operatorname{coker}\left(\phi_{1}\right)=M$. Sometimes we also denote it by

$$
\mathcal{F}: \cdots \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \xrightarrow{\phi_{1}} F_{0}(\rightarrow M \rightarrow 0) .
$$

Definition 1.21 (Left derived functor). Let T be a right-exact functor. Given a projective resolution of an R-module M :

$$
\mathcal{F}: \cdots \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \xrightarrow{\phi_{1}} F_{0}(\rightarrow M \rightarrow 0) .
$$

Define the left derived functor by $L_{i} T(M):=H_{i}(T \mathcal{F})$, which is just the homology of

$$
T \mathcal{F}: \cdots \rightarrow T\left(F_{n}\right) \rightarrow \cdots \rightarrow T\left(F_{1}\right) \rightarrow T\left(F_{0}\right)(\rightarrow T(M) \rightarrow 0)
$$

We collect basic properties of derived functors here.
Proposition 1.22. (1) $L_{0} T(M)=T(M)$;
(2) $L_{i} T(M)$ is independent of the choice of projective resolution;
(3) If M is projective, then $L_{i} T(M)=0$ for $i>0$.
(4) For a short exact sequence of R-modules

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

we have a long exact sequence

$$
\begin{aligned}
& \rightarrow L_{3} T(A) \rightarrow L_{3} T(B) \rightarrow L_{3} T(C) \\
& \rightarrow L_{2} T(A) \rightarrow L_{2} T(B) \rightarrow L_{2} T(C) \\
& \rightarrow L_{1} T(A) \rightarrow L_{1} T(B) \rightarrow L_{1} T(C) \\
& \rightarrow T(A) \rightarrow T(B) \rightarrow T(C) \rightarrow 0 .
\end{aligned}
$$

Definition 1.23 (Tor). For an R-module $N, \operatorname{Tor}_{i}^{R}(-, N)$ is defined by $L_{i} T(-)$ where $T=(-\otimes N)$.

Remark 1.24. So to compute $\operatorname{Tor}_{i}^{R}(M, N)$, we should pick a projective resolution \mathcal{F} of M and compute $H_{i}(\mathcal{F} \otimes N)$. Note that tensor products are symmetric, that is, $M \otimes N \simeq N \otimes M$, it can be seen that $\operatorname{Tor}_{i}^{R}(M, N) \simeq$ $\operatorname{Tor}_{i}^{R}(N, M)$, and $\operatorname{Tor}_{i}^{R}(M, N)$ can be also computed by pick a projective resolution \mathcal{G} of N and compute $H_{i}(M \otimes \mathcal{G})$.

Theorem 1.25. TFAE:
(1) N is flat;
(2) $\operatorname{Tor}_{i}^{R}(M, N)=0$ for all $i>0$ and all M;
(3) $\operatorname{Tor}_{1}^{R}(M, N)=0$ for all M.

Proof. (1) $\Longrightarrow(2)$: take a projective resolution \mathcal{F} of M, we need to compute $H_{i}(\mathcal{F} \otimes N)$. As N is flat, $\mathcal{F} \otimes N$ is exact, hence $\operatorname{Tor}_{i}^{R}(M, N)=0$ for all $i>0$.
$(2) \Longrightarrow(3):$ trivial.
$(3) \Longrightarrow(1)$: this follows from the long exact sequence

$$
\operatorname{Tor}_{1}^{R}\left(M^{\prime \prime}, N\right) \rightarrow M^{\prime} \otimes N \rightarrow M \otimes N \rightarrow M^{\prime \prime} \otimes N \rightarrow 0
$$

References

[1] Atiyah, MacDonald, Introduction to commutative algebra.
[2] Eisenbud, Commutative algebra with a view toward algebraic geometry.
Shanghai Center for Mathematical Sciences, Fudan University, Jiangwan Campus, 2005 Songhu Road, Shanghai, 200438, China

E-mail address: chenjiang@fudan.edu.cn

