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1. Introduction

In this lecture, we consider a (Noetherian) commutative ring R with iden-
tity element.

I will assume that students know about basic definitions and properties
of rings, ideals, modules, morphisms (e.g. Chapter 1–3 of [1]). Our main
textbook is [2]. We will cover selected topics in order to serve the lecture of
geometry of syzygies ([2, Section 17–19]).

1.1. Nakayama’s lemma. The Jacobson radical J(R) of R is the intersec-
tion of all maximal ideals. Note that y ∈ J(R) iff 1 − xy is a unit in R for
every x ∈ R.

Theorem 1.1 (Nakayama’s lemma). Let I be an ideal contained in the
Jacobson radical of R, and M a finitely generated R-module. If IM = M ,
then M = 0.

Lemma 1.2. Let I be an R-ideal and M a finitely generated R-module. If
IM = M , then there exists y ∈ I such that (1− y)M = 0.

Proof. This is a consequence of the Caylay–Hamilton theorem. Consider
m1, . . . ,mn a set of generators in M , then there exists an n × n matrix
A with coefficients in I such that (m1, . . . ,mn)T = A(m1, . . . ,mn)T . Set
m = (m1, . . . ,mn)T . Hence (In−A)m = 0. Note that adj(In−A)(In−A) =
det(In −A)In, we know that det(In −A)m = 0, that is, det(In −A)mi = 0
for all i. This implies that det(In −A)M = 0. �

Example 1.3. If we do not assume that M is finitely generated, this is not
true. For example, consider R = k[[x]], M = k[[x, x−1]].

Corollary 1.4. Let I be an ideal contained in the Jacobson radical of R,
and M a finitely generated R-module. If N + IM = M for some submodule
N ⊂M , then M = N .
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Proof. Apply Nakayama’s lemma to M/N . �

Corollary 1.5. Let (R,m) be a local ring and M a finitely generated R-
module. Consider m1, . . . ,mn ∈ M . If m̄1, . . . , m̄n ∈ M/mM is a basis (as
a R/m-vector space), then m1, . . . ,mn generates M (which is also a minimal
set of generators.)

Proof. Apply Corollary 1.4 to N the submodule generated by m1, . . . ,mn.
�

1.2. Noetherian rings.

Definition 1.6 (Noetherian ring). A ring R is Noetherian if one of the
following equivalent conditions holds:

(1) Every non-empty set of ideals has a maximal element;
(2) The set of ideals satisfies the ascending chain condition (ACC);
(3) Every ideal is finitely generated.

In this lecture, we assume all rings are Noetherian and all modules are
finitely generated for simplicity.

Theorem 1.7 (Hilbert basis theorem). If R is Noetherian, then R[x] is
Noetherian.

Idea of proof. Consider I ⊂ R[x] an ideal. Consider J ⊂ R the leading
coefficients of I, then J is finitely generated. We may assume that J is
generated by the leading coefficients of f1, . . . , fn ∈ R[x]. Take I ′ be the
ideal generated by f1, . . . , fn, then it is easy to see that any f ∈ I can be
written as f = f ′ + g with f ′ ∈ I ′ and deg g < maxi{deg fi} = r. So

I = I ∩ (R⊕Rx⊕ · · · ⊕Rxr−1) + I ′

is finitely generated. (Check that I ∩ (R ⊕ Rx ⊕ · · · ⊕ Rxr−1) is finitely
generated!) �

Example 1.8. Any quotient of polynomial ring k[x1, . . . , xn]/I is Noether-
ian.

1.3. Associated primes. We will use the notion (A : B) to define the set
{a | aB ⊂ A} whenever it makes sense. For example, if N,N ′ ⊂ M are
R-modules and I an ideal, then we can define (N : I) as a submodule of M ,
and (N ′ : N) an ideal. Usually the set (0 : N) is denoted by ann(N) and
called the annihilator of N , that is, the set of elements whose multiplication
action kills N .

Definition 1.9 (Associated prime). A prime P of R is associated to M if
P = ann(x) for some x ∈M.

Associated primes are important in the primary decomposition. But here
we mainly focus on its relation with zero-divisors.

Theorem 1.10. Let R be a Noetherian ring and M a finitely generated
R-module. Then the union of associated primes to M consists of zero and
zero-divisors. Moreover, there are only finitely many associated primes.



COMMUTATIVE ALGEBRA NOTES 3

Proof. We want to show that⋃
ann(x):prime

ann(x) =
⋃
x 6=0

ann(x).

So it suffices to show that if ann(y) is maximal among all ann(x), then ann(y)
is prime. Consider rs ∈ ann(y) such that s 6∈ ann(y), then rsy = 0 but
sy 6= 0. We know that ann(y) ⊂ ann(sy), so equality holds by maximality.
This implies that r ∈ ann(y).

To prove the finiteness, we only outline the idea here. Denote Ass(M) the
set of associated primes. Then it is not hard to see that for a short exact
sequence

0→M ′ →M →M ′′ → 0,

we have
Ass(M ′) ⊂ Ass(M) ⊂ Ass(M ′) ∪Ass(M ′′).

So inductively we get the finiteness. �

Remark 1.11. Another fact is that if P is a prime minimal among all primes
containing ann(M), then P is an associated prime.

Corollary 1.12. Let R be a Noetherian ring and M a finitely generated
R-module. Let I be an ideal. Then either I contains a non zero-divisor on
M , or I annihilated a non-zero element of M .

Proof. Suppose that I contains only zero-divisors on M , then by Theo-
rem 1.10, I ⊂

⋃
ann(x):prime ann(x). So the conclusion follows from the fol-

lowing easy lemma. �

Lemma 1.13. Let I be an ideal and let P1, . . . , Pn be primes of R. If
I ⊂

⋃
i Pi, then I ⊂ Pi for some i.

1.4. Tensor products and Tor. Let M,N be R-modules, the tensor prod-
uct M ⊗N is defined by the module generated by

{m⊗ n | m ∈M,n ∈ N},
modulo relations

(m+m′)⊗ n = m⊗ n+m′ ⊗ n;

m⊗ (n+ n′) = m⊗ n+m⊗ n′;
(rm)⊗ n = m⊗ (rn) = r(m⊗ n)

for m ∈M,n ∈ N, r ∈ R. It can be characterized by the universal property
that if f : M × N → P is an R-bilinear map, then there exists a unique
g : M ⊗N → P such that f factors through g.

Example 1.14. (1) M ⊗R 'M , M ⊗Rn 'Mn;
(2) M ⊗R/I 'M/IM ;
(3) (M ⊗R N)P 'MP ⊗RP

NP .

Proposition 1.15. (−⊗N) is a right-exact functor. If

M ′
f−→M

g−→M ′′ → 0

is a exact sequence of R-modules, then

M ′ ⊗N f⊗1−−→M ⊗N g⊗1−−→M ′′ ⊗N → 0
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is exact.

Definition 1.16 (Flat module). N is flat if (− ⊗ N) is an exact functor,
that is, if

0→M ′ →M →M ′′ → 0

is a exact sequence of R-modules, then

0→M ′ ⊗N →M ⊗N →M ′′ ⊗N → 0

is exact.

To study flatness, we need to introduce Tor from homological algebra.

Definition 1.17 (Projective module). An R-module M is projective if for
any surjective map f : N1 → N2 and any map g : M → N2, there exists
h : M → N1 such that f ◦ h = g.

Example 1.18. Free modules are flat and projective.

Definition 1.19 (Complexes and homologies). A complex of R-modules is
a sequence of R-modules with (differential) homomorphisms

F : · · · → Fi+1
δi+1−→ Fi

δi−→ Fi−1 → . . .

such that δiδi+1 = 0 for each i. Denote the homology to be Hi(F) =
ker(δi)/im(δi+1). We say that F is exact at degree i if Hi(F) = 0. A
morphism of complexes φ : F → G is given by φi : Fi → Gi commuting with
differentials, that is, we have a commutative diagram

F : . . . // Fi+1
//

φi+1

��

Fi //

φi
��

Fi−1 //

φi−1

��

. . .

G : . . . // Gi+1
// Gi // Gi−1 // . . .

This naturally gives morphisms between homologies φi : Hi(F)→ Hi(G).

Definition 1.20 (Projective resolution). A projective resolution of an R-
module M is a complex of projective modules

F : · · · → Fn → · · · → F1
φ1−→ F0

which is exact and coker(φ1) = M . Sometimes we also denote it by

F : · · · → Fn → · · · → F1
φ1−→ F0(→M → 0).

Definition 1.21 (Left derived functor). Let T be a right-exact functor.
Given a projective resolution of an R-module M :

F : · · · → Fn → · · · → F1
φ1−→ F0(→M → 0).

Define the left derived functor by LiT (M) := Hi(TF), which is just the
homology of

TF : · · · → T (Fn)→ · · · → T (F1)→ T (F0)(→ T (M)→ 0).

We collect basic properties of derived functors here.

Proposition 1.22. (1) L0T (M) = T (M);
(2) LiT (M) is independent of the choice of projective resolution;
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(3) If M is projective, then LiT (M) = 0 for i > 0.
(4) For a short exact sequence of R-modules

0→ A→ B → C → 0,

we have a long exact sequence

. . .

→ L3T (A)→ L3T (B)→ L3T (C)

→ L2T (A)→ L2T (B)→ L2T (C)

→ L1T (A)→ L1T (B)→ L1T (C)

→ T (A)→ T (B)→ T (C)→ 0.

Definition 1.23 (Tor). For an R-module N , TorRi (−, N) is defined by
LiT (−) where T = (−⊗N).

Remark 1.24. So to compute TorRi (M,N), we should pick a projective res-
olution F of M and compute Hi(F ⊗ N). Note that tensor products are
symmetric, that is, M ⊗ N ' N ⊗M , it can be seen that TorRi (M,N) '
TorRi (N,M), and TorRi (M,N) can be also computed by pick a projective
resolution G of N and compute Hi(M ⊗ G).

Theorem 1.25. TFAE:

(1) N is flat;
(2) TorRi (M,N) = 0 for all i > 0 and all M ;
(3) TorR1 (M,N) = 0 for all M .

Proof. (1) =⇒ (2): take a projective resolution F of M , we need to
compute Hi(F ⊗N). As N is flat, F ⊗N is exact, hence TorRi (M,N) = 0
for all i > 0.

(2) =⇒ (3): trivial.
(3) =⇒ (1): this follows from the long exact sequence

TorR1 (M ′′, N)→M ′ ⊗N →M ⊗N →M ′′ ⊗N → 0.

�
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