COMMUTATIVE ALGEBRA NOTES

CHEN JIANG

Contents

1.	Introduction	1
1.1.	Nakayama's lemma	1
1.2.	Noetherian rings	2
1.3.	Associated primes	2
1.4.	Tensor products and Tor	3
References		5

1. Introduction

In this lecture, we consider a (Noetherian) commutative ring R with identity element.

I will assume that students know about basic definitions and properties of rings, ideals, modules, morphisms (e.g. Chapter 1–3 of [1]). Our main textbook is [2]. We will cover selected topics in order to serve the lecture of geometry of syzygies ([2, Section 17–19]).

1.1. Nakayama's lemma. The Jacobson radical J(R) of R is the intersection of all maximal ideals. Note that $y \in J(R)$ iff 1 - xy is a unit in R for every $x \in R$.

Theorem 1.1 (Nakayama's lemma). Let I be an ideal contained in the Jacobson radical of R, and M a finitely generated R-module. If IM = M, then M = 0.

Lemma 1.2. Let I be an R-ideal and M a finitely generated R-module. If IM = M, then there exists $y \in I$ such that (1 - y)M = 0.

Proof. This is a consequence of the Caylay–Hamilton theorem. Consider m_1, \ldots, m_n a set of generators in M, then there exists an $n \times n$ matrix A with coefficients in I such that $(m_1, \ldots, m_n)^T = A(m_1, \ldots, m_n)^T$. Set $\mathbf{m} = (m_1, \ldots, m_n)^T$. Hence $(I_n - A)\mathbf{m} = 0$. Note that $\mathrm{adj}(I_n - A)(I_n - A) = \mathrm{det}(I_n - A)I_n$, we know that $\mathrm{det}(I_n - A)\mathbf{m} = 0$, that is, $\mathrm{det}(I_n - A)m_i = 0$ for all i. This implies that $\mathrm{det}(I_n - A)M = 0$.

Example 1.3. If we do not assume that M is finitely generated, this is not true. For example, consider $R = k[[x]], M = k[[x, x^{-1}]].$

Corollary 1.4. Let I be an ideal contained in the Jacobson radical of R, and M a finitely generated R-module. If N + IM = M for some submodule $N \subset M$, then M = N.

Date: July 20, 2020.

Proof. Apply Nakayama's lemma to M/N.

Corollary 1.5. Let (R, \mathfrak{m}) be a local ring and M a finitely generated R-module. Consider $m_1, \ldots, m_n \in M$. If $\overline{m}_1, \ldots, \overline{m}_n \in M/\mathfrak{m}M$ is a basis (as a R/\mathfrak{m} -vector space), then m_1, \ldots, m_n generates M (which is also a minimal set of generators.)

Proof. Apply Corollary 1.4 to N the submodule generated by m_1, \ldots, m_n .

1.2. Noetherian rings.

Definition 1.6 (Noetherian ring). A ring R is *Noetherian* if one of the following equivalent conditions holds:

- (1) Every non-empty set of ideals has a maximal element;
- (2) The set of ideals satisfies the ascending chain condition (ACC);
- (3) Every ideal is finitely generated.

In this lecture, we assume all rings are Noetherian and all modules are finitely generated for simplicity.

Theorem 1.7 (Hilbert basis theorem). If R is Noetherian, then R[x] is Noetherian.

Idea of proof. Consider $I \subset R[x]$ an ideal. Consider $J \subset R$ the leading coefficients of I, then J is finitely generated. We may assume that J is generated by the leading coefficients of $f_1, \ldots, f_n \in R[x]$. Take I' be the ideal generated by f_1, \ldots, f_n , then it is easy to see that any $f \in I$ can be written as f = f' + g with $f' \in I'$ and $\deg g < \max_i \{\deg f_i\} = r$. So

$$I = I \cap (R \oplus Rx \oplus \cdots \oplus Rx^{r-1}) + I'$$

is finitely generated. (Check that $I \cap (R \oplus Rx \oplus \cdots \oplus Rx^{r-1})$ is finitely generated!)

Example 1.8. Any quotient of polynomial ring $k[x_1, \ldots, x_n]/I$ is Noetherian.

1.3. **Associated primes.** We will use the notion (A:B) to define the set $\{a \mid aB \subset A\}$ whenever it makes sense. For example, if $N, N' \subset M$ are R-modules and I an ideal, then we can define (N:I) as a submodule of M, and (N':N) an ideal. Usually the set (0:N) is denoted by $\operatorname{ann}(N)$ and called the $\operatorname{annihilator}$ of N, that is, the set of elements whose multiplication action kills N.

Definition 1.9 (Associated prime). A prime P of R is associated to M if $P = \operatorname{ann}(x)$ for some $x \in M$.

Associated primes are important in the primary decomposition. But here we mainly focus on its relation with zero-divisors.

Theorem 1.10. Let R be a Noetherian ring and M a finitely generated R-module. Then the union of associated primes to M consists of zero and zero-divisors. Moreover, there are only finitely many associated primes.

Proof. We want to show that

$$\bigcup_{\text{ann}(x): \text{prime}} \text{ann}(x) = \bigcup_{x \neq 0} \text{ann}(x).$$

So it suffices to show that if $\operatorname{ann}(y)$ is maximal among all $\operatorname{ann}(x)$, then $\operatorname{ann}(y)$ is prime. Consider $rs \in \operatorname{ann}(y)$ such that $s \notin \operatorname{ann}(y)$, then rsy = 0 but $sy \neq 0$. We know that $\operatorname{ann}(y) \subset \operatorname{ann}(sy)$, so equality holds by maximality. This implies that $r \in \operatorname{ann}(y)$.

To prove the finiteness, we only outline the idea here. Denote $\mathrm{Ass}(M)$ the set of associated primes. Then it is not hard to see that for a short exact sequence

$$0 \to M' \to M \to M'' \to 0$$
,

we have

$$\operatorname{Ass}(M') \subset \operatorname{Ass}(M) \subset \operatorname{Ass}(M') \cup \operatorname{Ass}(M'').$$

So inductively we get the finiteness.

Remark 1.11. Another fact is that if P is a prime minimal among all primes containing ann(M), then P is an associated prime.

Corollary 1.12. Let R be a Noetherian ring and M a finitely generated R-module. Let I be an ideal. Then either I contains a non zero-divisor on M, or I annihilated a non-zero element of M.

Proof. Suppose that I contains only zero-divisors on M, then by Theorem 1.10, $I \subset \bigcup_{\operatorname{ann}(x): \operatorname{prime}} \operatorname{ann}(x)$. So the conclusion follows from the following easy lemma.

Lemma 1.13. Let I be an ideal and let P_1, \ldots, P_n be primes of R. If $I \subset \bigcup_i P_i$, then $I \subset P_i$ for some i.

1.4. **Tensor products and Tor.** Let M, N be R-modules, the *tensor product* $M \otimes N$ is defined by the module generated by

$$\{m \otimes n \mid m \in M, n \in N\},\$$

modulo relations

$$(m+m') \otimes n = m \otimes n + m' \otimes n;$$

 $m \otimes (n+n') = m \otimes n + m \otimes n';$
 $(rm) \otimes n = m \otimes (rn) = r(m \otimes n)$

for $m \in M, n \in N, r \in R$. It can be characterized by the universal property that if $f: M \times N \to P$ is an R-bilinear map, then there exists a unique $g: M \otimes N \to P$ such that f factors through g.

Example 1.14. (1) $M \otimes R \simeq M$, $M \otimes R^n \simeq M^n$;

- (2) $M \otimes R/I \simeq M/IM$;
- (3) $(M \otimes_R N)_P \simeq M_P \otimes_{R_P} N_P$.

Proposition 1.15. $(-\otimes N)$ is a right-exact functor. If

$$M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

is a exact sequence of R-modules, then

$$M' \otimes N \xrightarrow{f \otimes 1} M \otimes N \xrightarrow{g \otimes 1} M'' \otimes N \to 0$$

is exact.

Definition 1.16 (Flat module). N is *flat* if $(-\otimes N)$ is an exact functor, that is, if

$$0 \to M' \to M \to M'' \to 0$$

is a exact sequence of R-modules, then

$$0 \to M' \otimes N \to M \otimes N \to M'' \otimes N \to 0$$

is exact.

To study flatness, we need to introduce Tor from homological algebra.

Definition 1.17 (Projective module). An R-module M is projective if for any surjective map $f: N_1 \to N_2$ and any map $g: M \to N_2$, there exists $h: M \to N_1$ such that $f \circ h = g$.

Example 1.18. Free modules are flat and projective.

Definition 1.19 (Complexes and homologies). A *complex* of *R*-modules is a sequence of *R*-modules with (differential) homomorphisms

$$\mathcal{F}: \cdots \to F_{i+1} \xrightarrow{\delta_{i+1}} F_i \xrightarrow{\delta_i} F_{i-1} \to \cdots$$

such that $\delta_i \delta_{i+1} = 0$ for each i. Denote the homology to be $H_i(\mathcal{F}) = \ker(\delta_i)/\operatorname{im}(\delta_{i+1})$. We say that \mathcal{F} is exact at degree i if $H_i(\mathcal{F}) = 0$. A morphism of complexes $\phi: \mathcal{F} \to \mathcal{G}$ is given by $\phi_i: F_i \to G_i$ commuting with differentials, that is, we have a commutative diagram

$$\mathcal{F}: \qquad \cdots \longrightarrow F_{i+1} \longrightarrow F_i \longrightarrow F_{i-1} \longrightarrow \cdots$$

$$\downarrow^{\phi_{i+1}} \qquad \downarrow^{\phi_i} \qquad \downarrow^{\phi_{i-1}}$$

$$\mathcal{G}: \qquad \cdots \longrightarrow G_{i+1} \longrightarrow G_i \longrightarrow G_{i-1} \longrightarrow \cdots$$

This naturally gives morphisms between homologies $\phi_i: H_i(\mathcal{F}) \to H_i(\mathcal{G})$.

Definition 1.20 (Projective resolution). A projective resolution of an R-module M is a complex of projective modules

$$\mathcal{F}: \cdots \to F_n \to \cdots \to F_1 \xrightarrow{\phi_1} F_0$$

which is exact and $\operatorname{coker}(\phi_1) = M$. Sometimes we also denote it by

$$\mathcal{F}: \cdots \to F_n \to \cdots \to F_1 \xrightarrow{\phi_1} F_0(\to M \to 0).$$

Definition 1.21 (Left derived functor). Let T be a right-exact functor. Given a projective resolution of an R-module M:

$$\mathcal{F}: \cdots \to F_n \to \cdots \to F_1 \xrightarrow{\phi_1} F_0(\to M \to 0).$$

Define the *left derived functor* by $L_iT(M) := H_i(T\mathcal{F})$, which is just the homology of

$$T\mathcal{F}: \cdots \to T(F_n) \to \cdots \to T(F_1) \to T(F_0) (\to T(M) \to 0).$$

We collect basic properties of derived functors here.

Proposition 1.22. (1)
$$L_0T(M) = T(M)$$
;

(2) $L_iT(M)$ is independent of the choice of projective resolution;

- (3) If M is projective, then $L_iT(M) = 0$ for i > 0.
- (4) For a short exact sequence of R-modules

$$0 \to A \to B \to C \to 0$$
,

we have a long exact sequence

 $\rightarrow L_3T(A) \rightarrow L_3T(B) \rightarrow L_3T(C)$ $\rightarrow L_2T(A) \rightarrow L_2T(B) \rightarrow L_2T(C)$ $\rightarrow L_1T(A) \rightarrow L_1T(B) \rightarrow L_1T(C)$ $\rightarrow T(A) \rightarrow T(B) \rightarrow T(C) \rightarrow 0.$

Definition 1.23 (Tor). For an R-module N, $\operatorname{Tor}_{i}^{R}(-,N)$ is defined by $L_iT(-)$ where $T=(-\otimes N)$.

Remark 1.24. So to compute $\operatorname{Tor}_{i}^{R}(M,N)$, we should pick a projective resolution \mathcal{F} of M and compute $H_i(\mathcal{F} \otimes N)$. Note that tensor products are symmetric, that is, $M \otimes N \simeq N \otimes M$, it can be seen that $\operatorname{Tor}_{i}^{R}(M,N) \simeq$ $\operatorname{Tor}_{i}^{R}(N,M)$, and $\operatorname{Tor}_{i}^{R}(M,N)$ can be also computed by pick a projective resolution \mathcal{G} of N and compute $H_i(M \otimes \mathcal{G})$.

Theorem 1.25. TFAE:

- (1) N is flat;
- (2) $\operatorname{Tor}_{i}^{R}(M, N) = 0$ for all i > 0 and all M; (3) $\operatorname{Tor}_{1}^{R}(M, N) = 0$ for all M.

Proof. (1) \implies (2): take a projective resolution \mathcal{F} of M, we need to compute $H_i(\mathcal{F} \otimes N)$. As N is flat, $\mathcal{F} \otimes N$ is exact, hence $\operatorname{Tor}_i^R(M,N) = 0$ for all i > 0.

- $(2) \implies (3)$: trivial.
- $(3) \implies (1)$: this follows from the long exact sequence

$$\operatorname{Tor}_1^R(M'',N) \to M' \otimes N \to M \otimes N \to M'' \otimes N \to 0.$$

References

- [1] Atiyah, MacDonald, Introduction to commutative algebra.
- [2] Eisenbud, Commutative algebra with a view toward algebraic geometry.

Shanghai Center for Mathematical Sciences, Fudan University, Jiangwan Campus, 2005 Songhu Road, Shanghai, 200438, China

E-mail address: chenjiang@fudan.edu.cn