SCMS Seminar

WORD-REPRESENTABLE GRAPHS 2

Lecture 2. Semi-transitive orientations as the main tool in the theory of

WORD-REPRESENTABLE GRAPHS DISCOVERED SO FAR.

Dr. Sergey Kitaev

University of Strathclyde

Time: 16: 00-17: 00. Tuesday, April 25, 2017
Venue: Room 2213, East Main Guanghua Tower, Handan Campus
Abstract: Suppose that w is a word and x and y are two distinct letters in w. We say that x and y alternate in w if after deleting in w all letters but the copies of x and y we either obtain a word xyxy... (Of even or odd length) or a word yxyx... (Of even or odd length). A graph $G=(V, E)$ is word-representable if there exists a word w over the alphabet V such that distinct letters x and y alternate in w if and only if (x, y) is an edge in E. For example, the 4 -cycle labeled by 1, 2, 3 and 4 in clockwise direction, can be represented by the word 13243142 .

Word-representable graphs generalize several classical classes of graphs, e.g. 3-colorable, comparability, subcubic and circle graphs. Some basic questions to ask about these graphs are:

- Which graphs are word-representable?
- How many graphs on n vertices are word-representable?
- What is the minimum length of a word that represents a given graph?

The lectures will be dedicated to a comprehensive introduction to the theory of word-representable graphs, the main subject of the book "Words and graphs" recently published by Springer.

