

MINIMAL MASS BLOW-UP SOLUTIONS FOR THE \$L^2\$ CRITICAL NLS WITH THE DELTA POTENTIAL FOR THE RADIAL DATA IN ONE DIMENSION

Speaker: Guixiang Xu Beijing Normal University

Time: Fri, Jul 15, 10:00-11:00

Venue: Zoom ID 618 038 6257, password: SCMS

Abstract: We consider the L^2 -critical nonlinear Schrödinger equation (NLS) with the delta potential $i\partial_t u + \partial_x^2 u + \mu \delta u +$ $|u|^4 u = 0$, $t \in R, x \in R$, where $\mu \in R$, and δ is the Dirac delta distribution at x = 0 .Local well-posedness theory together with sharp Gagliardo-Nirenberg inequality and the conservation laws of mass and energy implies that the solution with mass less than $||Q||_2$ is global existence in $H^1(R)$, where Q is the ground state of the L^2 -critical NLS without the delta potential (i.e. $\mu = 0$).

We are interested in the dynamics of the solution with threshold mass $||u_0||_2 = ||Q||_2$ in $H^1(R)$. First, for the case $\mu = 0$), such blow-up solution exists due to the pseudo-conformal symmetry of and is unique up to the symmetries of the equation the equation, $\mathrm{H}^{1}(R)$ \cite{Me93:NLS:mini from in sol} (see also $\det{HmKe05:NLS:mini blp}$, and recently in $L^2(R)$ from $cite{Dod:NLS:L2thrh1}$. Second, for the case $\mu < 0$, simple variational argument with the conservation laws of mass and energy implies that radial solutions with threshold mass exist globally in $H^1(R)$. Last, for the case $\mu > 0$, we show the existence of radial threshold solutions with blow-up speed determined by the sign (i.e. $\mu > 0$) of the delta potential perturbation since the refined blow-up profile to the rescaled equation is stable in a precise sense. The key ingredients here including the Energy-Morawetz argument and compactness method as well as the standard modulation analysis. It is a joint work with Xingdong Tang.