The Kervaire conjecture and the minimal complexity of surfaces

Lvzhou Chen Purdue University

上海数学中心几何群论暑期学校 August 16, 2022

Groups and Presentations

Presentations

- $1 = \langle x, y \mid xyx^{-1}y^{-2}, x^{-2}y^{-1}xy \rangle$
- No algorithm decides if a finite presentation represents 1
- **Hard** to understand groups via presentations

Question: What if we add **one relator** to a group G?

- $w \in G$, form $\langle G \mid w \rangle = G/\langle w \rangle$
- $\langle\!\langle w \rangle\!\rangle$ is the normal closure, generated by conjugates of w (and w^{-1})

One-relator groups/products

One-relator groups

$$H = \langle F_n \mid w \rangle = \langle x_1, \dots, x_n \mid w \rangle$$

Theorem (Freiheissatz): If w essentially involves x_n , then $\{\bar{x}_1, \ldots, \bar{x}_{n-1}\}$ generates a free subgroup in H.

Reformulate: $H = (F_{n-1} \star \mathbb{Z})/\langle\langle w \rangle\rangle$, and F_{n-1} injects.

One-relator products: $H = (A \star B)/\langle\langle w \rangle\rangle$

Question: When is H nontrivial? When does A inject?

Example: $A = \mathbb{Z}/2 = \langle a \mid a^2 = 1 \rangle, B = \mathbb{Z}/3 = \langle b \mid b^3 = 1 \rangle.$ $w = aub^{-1}u^{-1}, u \in A \star B.$ Then $\bar{a}^2 = \bar{a}^3$ in $H \implies \bar{a} = id \in H.$

The Kervaire conjecture

Question: $w \in A \star B$, when is $(A \star B)/\langle\langle w \rangle\rangle$ nontrivial?

Previous example: Torsion elements may cause problems.

Conjecture: A, B torsion-free, then $(A \star B)/\langle\langle w \rangle\rangle \neq 1$ for any $w \in A \star B$.

Conjecture: $w \in A \star B$, $(A \star B)/\langle\langle w^k \rangle\rangle$ is nontrivial, $k \geq 2$.

Conj. 1 (Kervaire '50s): Group $G \neq 1$, for any $w \in G \star \mathbb{Z}$, the quotient $(G \star \mathbb{Z})/\langle\langle w \rangle\rangle = \langle G, t \mid w \rangle$ is nontrivial.

Still open

Def: $H \neq 1$ has weight 1 if $H/\langle\langle w \rangle\rangle = 1$ for some $w \in H$.

Related problems in topology

(higher dimensional) knot group:

- $K \cong S^n$ n-knot in S^{n+2} , $M = S^{n+2} \setminus N(K)$, $n \ge 1$
- Knot group= $\pi_1(M) = \langle \langle w \rangle \rangle$, w = meridian

$$\star 1 = \pi_1(S^{n+2}) = \pi_1(M)/\langle\langle w \rangle\rangle$$
. so $\pi_1(M)$ has weight 1

Theorem (Kervaire): Fix $n \geq 3$, G is an n-knot group if and only if G is f.p., has weight 1, $H_1(G; \mathbb{Z}) \cong \mathbb{Z}$ and $H_2(G; \mathbb{Z}) = 0$.

Question (Kervaire)

Can $G \star \mathbb{Z}$ be an *n*-knot group?

Cabling Conjecture (Gonzalez-Acuña and Short):

When is Dehn surgery on a knot K in S^3 a connected sum?

The Kervaire conjecture

Conj. 1 (Kervaire '50s): Group $G \neq 1$, for any $w \in G \star \mathbb{Z}$, the quotient $(G \star \mathbb{Z})/\langle\langle w \rangle\rangle = \langle G, t \mid w \rangle$ is nontrivial.

Easy for many choices of w.

$$\bar{p}_{\mathbb{Z}}: (G \star \mathbb{Z})/\langle\langle w \rangle\rangle \twoheadrightarrow \mathbb{Z}/|p_{\mathbb{Z}}(w)|\mathbb{Z}$$

- $p_{\mathbb{Z}}: G \star \mathbb{Z} \to \mathbb{Z}$ $G \ni g \mapsto 0$ $1 \mapsto 1$
- If $|p_{\mathbb{Z}}(w)| \neq 1$, then $\mathbb{Z}/|p_{\mathbb{Z}}(w)|\mathbb{Z} \neq 1$
- ullet The interesting case: $p_{\mathbb{Z}}(w)=1$

The Kervaire-Laudenbach conjecture

When $p_{\mathbb{Z}}(w) = 1$, expect something stronger.

Conj. 2 (Kervaire–Laudenbach): For any $w \in G \star \mathbb{Z}$ with $p_{\mathbb{Z}}(w) = 1$, we have $G \hookrightarrow (G \star \mathbb{Z})/\langle\langle w \rangle\rangle$.

- Still open in general
- Similar to Freiheissatz
- Not true in general if $p_{\mathbb{Z}}(w) = 0$ • $w = gtht^{-1}, g, h \in G$ have different orders, $\mathbb{Z} = \langle t \rangle$
- Many partial answers by Gonzalez-Acunna, Short, Levin, Gerstenhaber, Rothaus, Stallings, Casson, Duncan, Howie, Klyachko, Fenn, Rourke, Thom, Brodskii, Forester, etc...

Two confirmed cases

Conj. 2 (Kervaire–Laudenbach): For any $w \in G \star \mathbb{Z}$ with $p_{\mathbb{Z}}(w) = 1$, we have $G \hookrightarrow (G \star \mathbb{Z})/\langle\langle w \rangle\rangle$.

Theorem (Gerstenhaber–Rothaus '62): Conj. 2 holds for G finite.

- $\bullet \implies \text{Conj. 2 holds for } G \text{ residually finite}$
- E.g. finitely generated linear groups

Proof idea:

$$G \to (G \star \langle t \rangle)/\langle w \rangle$$
 e.g. wish $w = atbtct^{-1} = id$ for some $t \in U(n)$ Show $U(n) \to U(n)$ is surjective (deg $\neq 0$) $t \mapsto w$

Two confirmed cases

Conj. 2 (Kervaire–Laudenbach): For any $w \in G \star \mathbb{Z}$ with $p_{\mathbb{Z}}(w) = 1$, we have $G \hookrightarrow (G \star \mathbb{Z})/\langle\langle w \rangle\rangle$.

Theorem (Gerstenhaber–Rothaus '62): Conj. 2 holds for *G* finite.

- $\bullet \implies \text{Conj. 2 holds for } G \text{ residually finite}$
- E.g. finitely generated linear groups

Theorem (Klyachko '93): Conj. 2 holds for G torsion-free.

- Proof by contradiction via combinatorial methods
- Clear conceptual reason?

From equations to surfaces

Suppose $G \hookrightarrow (G \star \mathbb{Z})/\langle\langle w \rangle\rangle$,

- $g \in \langle w \rangle$ for some $g \neq 1 \in G$
- \implies g is a product of conjugates of w and w^{-1}
- E.g. $g = awa^{-1} \cdot bwb^{-1} \cdot cw^{-1}c^{-1} \cdot dw^{-1}d^{-1}$ in $G \star \mathbb{Z}$
- An equation in $G \star \mathbb{Z}$, involving conjugacy classes

From equations to surfaces

Equations in $G \star \mathbb{Z}$

• $g = awa^{-1} \cdot bwb^{-1} \cdot cw^{-1}c^{-1} \cdot dw^{-1}d^{-1}$

Surfaces in X, a space with $\pi_1(X) = G \star \mathbb{Z}$.

What's wrong?

Surfaces in X, a space with $\pi_1(X) = G \star \mathbb{Z}$.

Question: Why should such surfaces not exist?

$$\bullet$$
 $-\chi(S) = n - 1, n = \#w + \#w^{-1}$

Our new proof: Show $-\chi(S) \ge n$ if S bounds w, w^{-1} or G

• S must be complicated enough compared to its boundary

Minimal complexity

Theorem 1 (C.): For $G \star \mathbb{Z}$ with G torsion-free, any irreducible w-admissible surface S with $p_{\mathbb{Z}}(w) = 1$ has $-\chi(S) \geq \deg(S)$.

Def: $\pi_1(X) = G \star \mathbb{Z}$, $f: S \to X$ for S compact oriented is w-admissible if each component of ∂S represents

(1) either $g \in G$, (2) or w^n for $n \in \mathbb{Z} \setminus \{0\}$ (conjugation)

Its **degree** $\deg(S) = \sum_{w^n \subset \partial S} |n|$

$$deg(S) = 5 + 1 + 2 + 4$$
$$= 6 + 6 = 12$$

• Not necessarily planar

Irreducibility

Theorem 1 (C.): For $G \star \mathbb{Z}$ with G torsion-free, any irreducible w-admissible surface S with $p_{\mathbb{Z}}(w) = 1$ has $-\chi(S) \geq \deg(S)$.

Irreducibility

Theorem 1 (C.): For $G \star \mathbb{Z}$ with G torsion-free, any irreducible w-admissible surface S with $p_{\mathbb{Z}}(w) = 1$ has $-\chi(S) \geq \deg(S)$.

Def: S is irreducible if no $w^n, w^{-m} \subset \partial S$ with m, n > 0 can be merged to represent w^{n-m} .

Lie in different conjugates of the cyclic group $\langle w \rangle$

Theorem 1 implies Klyachko

Theorem 1 (C.): For $G \star \mathbb{Z}$ with G torsion-free, any irreducible w-admissible surface S with $p_{\mathbb{Z}}(w) = 1$ has $-\chi(S) \geq \deg(S)$. Allows genus

Theorem (Klyachko):

 $G \hookrightarrow (G \star \mathbb{Z})/\langle\langle w \rangle\rangle$ if G torsion-free and $p_{\mathbb{Z}}(w) = 1$.

Proof: Suppose $G \hookrightarrow (G \star \mathbb{Z})/\langle w \rangle$

Find $1 \neq g \in \langle \langle w \rangle \rangle \cap G$

Simplest equation \implies S irreducible

$$n-1 = -\chi(S) \stackrel{\text{Thm1}}{\geq} n = \deg(S).$$

Torsion

Theorem 1 (C.): For $G \star \mathbb{Z}$ with G torsion-free, any irreducible w-admissible surface S with $p_{\mathbb{Z}}(w) = 1$ has

$$-\chi(S) \ge \deg(S).$$

This fails if G has torsion.

Example: $a \in G$ has order 2, w = aTatct, $T = t^{-1}$, c = C = id

Torsion

Theorem 1 (C.): For $G \star \mathbb{Z}$ with G torsion-free, any irreducible w-admissible surface S with $p_{\mathbb{Z}}(w) = 1$ has

$$-\chi(S) \ge \deg(S).$$

This fails if G has torsion.

Example: $a \in G$ has order 2, w = aTatct, $T = t^{-1}$, c = C = id

 ∂S two components:

$$w^4$$
 and w^{-4}
 $deg(S) = 8$
 $-\chi(S) = 4 = \frac{1}{2}deg(S)$
 S non-planar (genus 2)

Torsion

Theorem 1 (C.): For $G \star \mathbb{Z}$ with G torsion-free, any irreducible w-admissible surface S with $p_{\mathbb{Z}}(w) = 1$ has $-\chi(S) \geq \deg(S)$.

Theorem 2 (C.): For $G \star \mathbb{Z}$, if G has no k-torsion $\forall k < n$, then any irreducible w-admissible surface S with $p_{\mathbb{Z}}(w) = 1$ has

 $-\chi(S) \ge \left(1 - \frac{1}{n}\right) \deg(S).$

Theorem 2 (special case): For $G \star \mathbb{Z}$ with G arbitrary, any irreducible w-admissible surface S with $p_{\mathbb{Z}}(w) = 1$ has

$$-\chi(S) \ge \frac{1}{2}\deg(S).$$

Proper powers

Theorem 2 (special case): For $G \star \mathbb{Z}$ with G arbitrary, any irreducible w-admissible surface S with $p_{\mathbb{Z}}(w) = 1$ has

$$-\chi(S) \ge \frac{1}{2}\deg(S).$$

Theorem 3 (C.): $G \hookrightarrow (G \star \mathbb{Z})/\langle\langle w^k \rangle\rangle$ for any G and k > 1 if $p_{\mathbb{Z}}(w) = 1$.

Conjecture: $A, B \hookrightarrow (A \star B)/\langle\langle w^k \rangle\rangle$ if k > 1 and $|w| \ge 2$.

• Known for $k \geq 4$ due to Howie.

Proper powers

Theorem 2 (special case): For $G \star \mathbb{Z}$ with G arbitrary, any irreducible w-admissible surface S with $p_{\mathbb{Z}}(w) = 1$ has

$$-\chi(S) \ge \frac{1}{2}\deg(S).$$

Theorem 3 (C.): $G \hookrightarrow (G \star \mathbb{Z})/\langle\langle w^k \rangle\rangle$ for any G and k > 1 if $p_{\mathbb{Z}}(w) = 1$.

Proof: Minimal counterexample as a w-admissible surface S

$$n = \#$$
 components around w^k or w^{-k}

$$n - 1 = -\chi(S) \stackrel{\text{Thm2}}{\geq} \frac{1}{2} \deg(S)$$

$$= \frac{1}{2} k n \geq n.$$
Since $k \geq 2$.

Planarity

What if we still want $-\chi(S) \ge \deg(S)$?

Conjecture (C.): For $G \star \mathbb{Z}$ with G arbitrary, $p_{\mathbb{Z}}(w) = 1$, any planar connected irreducible w-admissible surface S with at least one boundary in G has $-\chi(S) \geq \deg(S)$.

- Planarity is a subtle condition in minimal complexity,
- Difficulty: Not preserved under nice operations:
 - * Taking finite covers,
 - * Cut-and-paste.
- Can be handled carefully in some situations
 - \star Avery-C.: $w \in A \star B$, planar S with $\partial S = \{w^n, \text{torsion}\}.$

Proof idea

Theorem 1 (C.): For $G \star \mathbb{Z}$ with G torsion-free, any irreducible w-admissible surface S with $p_{\mathbb{Z}}(w) = 1$ has

$$-\chi(S) \ge \deg(S)$$
.

Outline of proof:

Step 1: Reduce to the case where w has a specific form

$$w = a_1 T b_1 t a_2 T b_2 t \cdots a_k T b_k t c t$$

by changing the HNN extension structure.

$$\begin{pmatrix} G \star G \\ G \end{pmatrix} \cong \begin{pmatrix} G \\ 1 \end{pmatrix} X =$$

Proof idea: pieces of S

Step 2: Use the edge space to decompose S into pieces,

- Simplify so that each piece is a disk or annulus
- E.g. $w = a_1 T b_1 t c t$, $w^{-1} = T C T B_1 t A_1$

Proof idea: linear programming

Euler characteristic is linear

Proof idea: linear programming

Theorem 1 (C.): For $G \star \mathbb{Z}$ with G torsion-free, any irreducible w-admissible surface S with $p_{\mathbb{Z}}(w) = 1$ has

$$-\chi(S) \ge \deg(S)$$
.

Key: Euler characteristic is linear.

$$\chi(S) = \sum_{\text{pieces } P} \chi(P) - \#\text{cuts}$$

$$= \sum_{\text{pieces } P} (\chi(P) - \frac{1}{2} \#\text{cuts in } P)$$

$$= \sum_{\text{pieces } P} \chi_o(P)$$

$$= \sum_{i} \chi_o(P_i) \cdot \#P_i$$

Proof idea: LP duality

Theorem 1 (C.): For $G \star \mathbb{Z}$ with G torsion-free, any irreducible w-admissible surface S with $p_{\mathbb{Z}}(w) = 1$ has

$$-\chi(S) \ge \deg(S)$$
.

Step 3: Estimate $-\chi(S)$ using linear programming duality

• Minimizing $-\chi(S)$ is a linear programming problem

$$\min_{x}\langle c,x\rangle$$

$$Ax \geq b, x \geq 0 \qquad \langle c,x\rangle \geq \langle A^Ty,x\rangle$$
 • Use the dual problem to estimate
$$\max_{y}\langle b,y\rangle$$

$$\sum_{A^Ty}\langle c,y\rangle = 0$$

$$2\langle y,b\rangle$$

$$2\langle y,b\rangle$$

- * Any feasible dual solution gives a lower bound
- Miracle: Uniform dual solution only depending on the specific form

Minimal complexity as invariants

Theorem 1 (C.): For $G \star \mathbb{Z}$ with G torsion-free, any irreducible w-admissible surface S with $p_{\mathbb{Z}}(w) = 1$ has $-\chi(S) \geq \deg(S)$.

A new invariant: $\sigma(w) := \inf_{S} \frac{-\chi(S)}{\deg(S)}$ for a given w.

• Theorem $1 \Longrightarrow \sigma(w) \ge 1$.

Related invariant: scl

Def: $\pi_1(X) = G$, $f: S \to X$ for S compact oriented is admissible (for $w \in G$) if each component of ∂S represents w^n for $n \in \mathbb{Z} \setminus \{0\}$.

Its algebraic degree $\deg_{alg}(S) = \sum_{w^n \subset \partial S} n$

Def: Given $w \in [G, G]$, $\operatorname{scl}_G(w) := \inf_S \frac{-\chi(S)}{2|\deg_{alg}(S)|}$,

called the stable commutator length of w.

Thank you!