# Algebraic surfaces

Lecture I: The Picard group, Riemann-Roch,...

Arnaud Beauville

Université Côte d'Azur

July 2020

### Divisors and line bundles

Surface = smooth, projective, over  $\mathbb{C}$ .

$$Pic(S) = \{ \text{line bundles on } S \} / \sim, \text{ (group for } \otimes ).$$

$$\mathsf{Div}(S) = \{D = \sum n_i C_i\}. \qquad D \geqslant 0 \text{ (effective) if } n_i \geqslant 0 \ \forall i.$$
$$\{D \geqslant 0\} \quad \stackrel{\sim}{\longleftrightarrow} \quad \{(L,s) \mid L \in \mathsf{Pic}(S), 0 \neq s \in H^0(L)\}$$

We put  $L = \mathcal{O}_S(D)$ . Map  $D \mapsto \mathcal{O}_S(D)$  extends by linearity to homomorphism  $\text{Div}(S) \twoheadrightarrow \text{Pic}(S)$ . Then  $\text{Pic}(S) = \text{Div}(S)/\equiv$  where  $D \equiv D' \Leftrightarrow D - D' = \text{div}(\varphi)$ ,  $\varphi$  rational function on S.

C irreducible curve,  $s \in H^0(\mathcal{O}_S(C))$  defining C.  $\mathcal{O}_S(-C) \stackrel{s}{\hookrightarrow} \mathcal{O}_S$  $\Rightarrow \mathcal{O}_S(-C) \cong \text{ideal sheaf of } C \text{ in } S$ .

$$f: S \to T \iff f^* : Pic(T) \to Pic(S).$$
  
  $D \in Div(T); \text{ if } f(S) \not\subset D, f^*D \in Div(S) \text{ and } \mathcal{O}_S(f^*D) = f^*\mathcal{O}_S(D).$ 

### The intersection form

 $C \neq D$  irreducible,  $p \in C \cap D$ . f, g equations of C, D in  $\mathcal{O}_p$ .

**Definition**:  $m_p(C \cap D) := \dim_{\mathbb{C}} \mathcal{O}_p/(f,g)$ .

**Example**:  $m_p(C \cap D) = 1 \iff (f,g) = \mathfrak{m}_p \iff f,g$  local coordinates at  $p \iff C$  and D transverse.

**Definition**: 
$$(C \cdot D) := \sum_{p \in C \cap D} m_p(C \cap D).$$

#### Theorem

 $\exists$  bilinear symmetric form  $(\cdot)$ :  $\operatorname{Pic}(S) \times \operatorname{Pic}(S) \to \mathbb{Z}$  such that  $(\mathcal{O}_S(C) \cdot \mathcal{O}_S(D)) = (C \cdot D)$  for C, D irreducible.

**Remark**: Suppose C smooth,  $D\geqslant 0$ .  $\mathcal{O}_S(D)$  has a section s with  $\operatorname{div}(s)=D$ ; then  $(C\cdot D)=\deg s_{|C}=\deg \mathcal{O}_S(D)_{|C}$ . By linearity,  $(L\cdot \mathcal{O}_S(C))=\deg L_{|C}$  for all  $L\in \operatorname{Pic}(S)$ .

# Examples

$$\bigcirc{1}$$
  $S = \mathbb{P}^2$ 

 $C \subset \mathbb{P}^2$  defined by a form  $F_d(X,Y,Z)$  of degree d.  $\frac{F_d}{Z^d}$  rational function  $\Rightarrow C \equiv dH$ , H line in  $\mathbb{P}^2$ . Thus  $\operatorname{Pic}(\mathbb{P}^2) = \mathbb{Z}[H]$ ,  $(C \cdot D) : \deg(C) \deg(D)$  (Bézout theorem).

$$\bigcirc$$
  $S = \mathbb{P}^1 \times \mathbb{P}^1$ 

Put 
$$A = \mathbb{P}^1 \times \{0\}$$
,  $B = \{0\} \times \mathbb{P}^1$ ,  $U = S \setminus (A \cup B) \cong \mathbb{A}^2$ .

 $D \in \text{Div}(S)$ :  $D_{|U} = \text{div}(\varphi)$  for some rational function  $\varphi$ .

$$D - \operatorname{div} \varphi = aA + bB$$
 for some  $a, b \in \mathbb{Z} \implies$ 

$$\operatorname{Pic}(\mathbb{P}^1 \times \mathbb{P}^1) = \mathbb{Z}[A] \oplus \mathbb{Z}[B]. \hspace{1cm} (A \cdot B) = 1 \text{ (transverse)}.$$

$$A^2=\left(A\cdot (\mathbb{P}^1 imes\{1\})
ight)=0,\ B^2=0$$
: intersection form  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ .

# Examples (continued)

- ③  $p: S \to C$ ,  $F:=p^{-1}(x)$ .  $\exists D \in Div(C)$ ,  $x \notin D$ ,  $x \equiv D$ ; then  $F \equiv p^*D \implies F^2 = F \cdot p^*D = 0$ .
- (4)  $D \ge 0$ ,  $D \cdot C < 0 \Rightarrow D = C + E$ ,  $E \ge 0$ . (otherwise  $D = \sum n_i C_i$ ,  $C_i \ne C \Rightarrow C \cdot C_i \ge 0 \ \forall i$ )

### Canonical line bundle and Riemann-Roch

$$\Omega_S^1$$
 = sheaf of differential 1-forms, locally isomorphic to  $\mathcal{O}_S^2$  (locally  $a(x,y)dx + b(x,y)dy$ ).

$$\mathcal{K}_{\mathcal{S}} = \bigwedge^2 \Omega^1_{\mathcal{S}} = \text{sheaf of 2-forms} = \text{canonical line bundle}$$
  
(locally  $\omega = f(x, y) dx \wedge dy, \text{div}(\omega) = \text{div}(f)$ ).

 $K_S$  or K =canonical divisor = divisor of any rational 2-form.

**Example :**  $K_{\mathbb{P}^2} \equiv -3H$ .

Indeed the 2-form  $\frac{XdY \wedge dZ + YdZ \wedge dX + ZdX \wedge dY}{XYZ}$  is well-defined, does not vanish, and has a pole  $\equiv 3H$ .

**Example :**  $C_1$ ,  $C_2$  smooth projective curves,  $S = C_1 \times C_2$ , projections  $p_i : S \to C_i$ . Then  $K_S \equiv p_1^* K_{C_1} + p_2^* K_{C_2}$ .

Indeed if  $\alpha_i$  is a 1-form on  $C_i$  (possibly rational),  $p_1^*\alpha_1 \wedge p_2^*\alpha_2$  is a 2-form on S, with divisor  $p_1^*\operatorname{div}(\alpha_1) + p_2^*\operatorname{div}(\alpha_2)$ .

### Riemann-Roch

Recall:  $L \in \operatorname{Pic}(S) \leadsto H^i(S,L) = H^i(L), \ i = 0,1,2.$   $h^i(L) = \dim H^i(L). \ \chi(L) := h^0(L) - h^1(L) + h^2(L).$  If  $L = \mathcal{O}_S(D)$ , we write  $H^i(D), \ h^i(D), \ \chi(D).$ 

#### Theorem

- Riemann-Roch :  $\chi(L) = \chi(\mathcal{O}_S) + \frac{1}{2}(L^2 \mathcal{K}_S \cdot L)$ .
- Serre duality :  $h^i(L) = h^{2-i}(\mathcal{K}_S \otimes L^{-1})$ .

Since the term  $h^1$  is difficult to control, we will most often use R-R as an inequality, using Serre duality. In divisor form:

$$h^0(D) + h^0(K - D) \geqslant \chi(\mathcal{O}_S) + \frac{1}{2}(D^2 - K \cdot D).$$

# The genus formula

### Corollary (genus formula)

C irreducible 
$$\subset S \Rightarrow g(C) := h^1(\mathcal{O}_C) = 1 + \frac{1}{2}(C^2 + K \cdot C).$$

**Proof**: Exact sequence  $0 \to \mathcal{O}_S(-C) \to \mathcal{O}_S \to \mathcal{O}_C \to 0 \implies$ 

$$\chi(\mathcal{O}_C) = \chi(\mathcal{O}_S) - \chi(\mathcal{O}_S(-C)) \ \stackrel{\text{R-R}}{=\!\!\!=} \ -\frac{1}{2}(C^2 + K \cdot C) \ . \quad \blacksquare$$

**Examples :** •  $C \subset \mathbb{P}^2$  of degree  $d \Rightarrow$ 

$$g(C) = 1 + \frac{1}{2}(d^2 - 3d) = \frac{1}{2}(d - 1)(d - 2).$$

•  $C \subset \mathbb{P}^1 \times \mathbb{P}^1$  of bidegree (p,q) (i.e.  $C \equiv pA+qB$ )  $\Rightarrow$   $g(C) = 1 + \frac{1}{2}(2pq-2p-2q) = (p-1)(q-1) \,.$ 

## The genus of a singular curve

**Remark**: Let  $n: N \to C$  be the normalization of C. Then  $g(C) \geqslant g(N)$ , with equality iff C is smooth.

**Proof :** Exact sequence  $0 \to \mathcal{O}_C \to n_* \mathcal{O}_N \to \mathcal{T} \to 0$  with  $\mathcal{T}$  concentrated on the singular points of C.

Hence  $H^i(\mathcal{T}) = 0$  for i > 0. Therefore  $\chi(\mathcal{O}_C) = \chi(\mathcal{O}_N) - h^0(\mathcal{T})$ , and  $g(C) = g(N) + h^0(\mathcal{T}) \geqslant g(N)$ , equality iff C = N smooth.

### Corollary

$$C^2 + K \cdot C \geqslant -2$$
; equality  $\Rightarrow C \cong \mathbb{P}^1$ .

Indeed 
$$C^2 + K \cdot C = 2g(C) - 2 \ge 2g(N) - 2 \ge -2$$
.



### Numerical invariants

Algebraic surfaces are distinguished by their numerical invariants:

• The most important:  $K^2$ ,  $\chi(\mathcal{O})$ .

Though we will not use this in the lectures, I want to mention:

#### Theorem

- **1** (*M.* Noether)  $K^2 \ge 2\chi(\mathcal{O}) 6$ ;
- ② (Miyaoka-Yau)  $K^2 \leq 9\chi(\mathcal{O})$ .

The relation of  $K^2/\chi(\mathcal{O})$  with the geometry of the surface is a long chapter of surface theory ("geography").

Refined invariants:

- $h^2(\mathcal{O}) = h^0(K)$  (Serre duality), the **geometric genus**  $p_g$ ;
- $h^1(\mathcal{O}) = H^0(\Omega^1)$  (Hodge theory), the irregularity q;
- $h^0(nK)$   $(n \ge 1)$ , the plurigenera  $P_n$ .