2020 AG Summer School

Zhiyuan Li

July 2020

References for Lecture I-III: Hartshorne "Algebraic Geometry" Chapter I and Chapter II; Vakil "Foundations of Algebraic Geometry" Part II and Part V

1 Projective Scheme

All the rings will be commutative.

1.1 A warm up for projective geometry

* Projective spaces as complex manifolds

 $\mathbb{P}^n_{\mathbb{C}} := \mathbb{C}^n - \{(0, \dots, 0)\}/\sim$ has a complex manifold structure by associating a holomorphic local charts.

Definition 1.1.1 (projective complex manifold). A complex manifold M is said to be projective if there is a closed embedding $M \hookrightarrow \mathbb{P}^n_{\mathbb{C}}$ for some n.

Typical examples (from last week)

- The compact Riemman surfaces of genus g
- The Grassmannian Gr(r, n) can be embedded into $\mathbb{P}^{\binom{n}{k}-1}$ via the Plücker embedding.
- product, \mathbb{P}^n -bundle, polarized families over projective objects

* Projective spaces as schmems/varieties

We have seen from last week: $\mathbb{P}^n_{\mathbb{C}}$ can be viewed as a scheme obtained by gluing n+1 open subsets

$$U_i \cong \mathbb{A}^n_{\mathbb{C}} = \operatorname{Spec}\left(\mathbb{C}\left[\frac{X_0}{X_i}, \dots, \frac{X_n}{X_i}\right]\right)$$

along the overlaps $U_{ij} = U_i \cap U_j$ via the transistion function $\frac{X_j}{X_i} \mapsto \frac{X_i}{X_j}$.

The projective schemes over \mathbb{C} are closed subschemes of $\mathbb{P}^n_{\mathbb{C}}$ under Zariski topology. The projective complex varieties are obtained by taking the closed

points of projective schemes. Such varieties can be viewed as the solution set of homogenous polynomial equations

$$f_1(x_0,\ldots,x_n) = \ldots = f_m(x_0,\ldots,x_n) = 0.$$

where f_i are homogenous.

• Chow's Theorem/GAGA by Serre: there is an equivalence

 $\{projective complex manifolds \} \Leftrightarrow \{Projective complex varieites\}$

Goal of today: functorial algebraic constructions of projective objects

1.2 Proj constructions

The Spectrum functor defines an equivalence

$$\operatorname{Spec}: \{\operatorname{rings}\} \longrightarrow \{\operatorname{affine \ schemes}\}$$

$$R \mapsto \operatorname{Spec} R$$

The projective schemes can be obtained via so called Proj functor.

Definition 1.2.1 (**Proj** construction for graded ring).

Let $S = \bigoplus_{d \geq 0} S_d$ be a graded ring and $S_+ = \bigoplus_{d > 0} S_d$ the irrelevant ideal. Then

Proj
$$S = \{ \mathfrak{p} \in \text{Spec } S | \mathfrak{p} \text{ is homogenous}, S_+ \not\subset \mathfrak{p} \}$$

We endow it with the induced topology.

• $\forall f \in S$ homogenous of degree d, there is a standard open subset

$$D_+(f) = {\mathfrak{p} \in \text{Proj } S | f \notin \mathfrak{p}} \cong \text{Spec } S_{(f)}$$

where $S_{(f)}$ is the subring of S_f consisting of elements of the form r/f^n with r homogeneous and $\deg(r)=nd$.

• The structure sheaf $\mathcal{O}_{\text{Proj }S}$ on Proj S is the unique sheaf of rings $\mathcal{O}_{\text{Proj }S}$ which agrees with $\mathcal{O}_{\text{Spec }(S_{(f)})}$ on the standard open subset $D_{+}(f)$.

Example 1. 1. When $S = k[x_0, ..., x_n] = \bigoplus S_d$ with the usual grading, then Proj $S = \mathbb{P}_k^n$.

2. Write $T = k[y_0, \dots, y_m] = \bigoplus T_d$. Then

Proj
$$(\bigoplus_d S_d \otimes T_d) = \mathbb{P}_k^n \times \mathbb{P}_k^m$$
.

FACT: Proj defines a functor

 $\operatorname{Proj}: \{ \texttt{graded ring over A} \} \to \{ \texttt{projective scheme over A} \}$

Some examples for morphisms between projective varieties.

Example 2.

- (1) Veronese or *d*-uple embedding: $\varphi_d: \mathbb{P}^n \to \mathbb{P}^{\binom{n+d}{d}-1}$ sending $[x_0, \dots, x_n]$ to $[x_0^d, x_0^{d-1}x_1, \dots, x_n^d]$.
- (2) Segre embedding: $\mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^{nm+n+m}$ sending $([x_0, \dots, x_n], [y_0, \dots, y_m])$ to $[x_0, \dots, x_n, y_m]$.

Note that (2) also implies that the product of projective varieties over k remains projective.

The construction of Proj of a graded sheaf gives rise to a projective morphism.

Definition 1.2.2 (Proj construction of graded sheaf).

• A graded quasicoherent sheaf \mathcal{F} of \mathcal{O}_X -modules means

$$\mathcal{F} = \bigoplus_{d \ge 0} \mathcal{F}_d$$

satisfying $\mathcal{F}_d \cdot \mathcal{F}_{d'} \subseteq \mathcal{F}_{d+d'}$ and $\mathcal{F}_0 = \mathcal{O}_X$.

• We can define Proj \mathcal{F} by gluing the scheme Proj $\mathcal{F}(U)$, $U \subseteq X$.

Example 3. If \mathcal{E} is a locally free sheaf on X, then $\operatorname{Sym}^{\bullet}\mathcal{E} = \bigoplus \operatorname{Sym}^{d}\mathcal{E}$ is a graded \mathcal{O}_{X} -module. We obtain a projective bundle

$$\mathbb{P}(\mathcal{E}) = \text{Proj } (\text{Sym}^{\bullet} \mathcal{E})$$

over X.

Basic properties of a projective scheme.

(a) Let X be a projective variety over k. Then X is proper and $H^0(X, \mathcal{O}_X) = k$.

The converse is almost true:

Chow's Lemma: Every proper variety is birational to a projective variety.

(b) (Twisted sheaf) Suppose $S = k[x_0, ..., x_n]$ is generated by S_1 . The projective scheme Proj S carries a natural invertible sheaf $\mathcal{O}_S(1) := \widetilde{S}(1)$.

E.g. the projective space \mathbb{P}^n_k carries a natural invertible sheaf $\mathcal{O}_{\mathbb{P}^n_k}(1)$. Hence the projective subvariety $X\subseteq \mathbb{P}^n_k$ can be endowed with an invertible sheaf $\mathcal{O}_X(1)$ via restriction.

2 Geometry of projective varieties

Classical problem: find \sharp of polynomial equations. Geometrically, this is related to how varieties intersects.

The answer of this problem is to relate # to some invariants of projective varieties.

2.1 Invariants of projective varieties

A motivating example is

Example 4 (Gauss' fundamental theorem of algebra). The polynomial equation f(z) = 0 has $\deg(f)$ solutions (with multiplicity) in \mathbb{C} . Equivalently, the homogenous polynomial equation f(x,y) = 0 has $\deg(f)$ solutions.

For three variables, the fundamental result is the following:

Theorem 2.1.1 (Bézout theorem for plane curves). Let f, g be two distinct irreducible homogenous polynomials in k[x, y, z]. The equations

$$f(x, y, z) = g(x, y, z) = 0$$

have $deg(f) \cdot deg(g)$ solutions (with multiplicity).

In other words, the two plane curves $C_1 = \{f(x, y, z) = 0\}$ and $C_2 = \{g(x, y, z) = 0\}$ in \mathbb{P}^2 meet at $\deg(f) \deg(g)$ points.

Remark. The Bézout's theorem tells that any two closed curves in \mathbb{P}^2 will have non-empty intersections. Note this fails for affine varieties, i.e. two affine lines in \mathbb{A}^2 do not necessarily meet.

The higher dimensional generalization requires the concept of Hilbert polynomial.

* Hilbert polynomial of projective varieties

Definition 2.1.2. Let \mathcal{F} be a coherent sheaf on a projective scheme $X \subseteq \mathbb{P}^n$. By **Hilbert-Serre**, there eixsts a polynomial $P_{\mathcal{F}}(z) \in \mathbb{Q}[z]$ such that

$$P_{\mathcal{F}}(d) = \chi(\mathcal{F}(d)) = \sum_{i \ge 0} (-1)^i h^i(X, \mathcal{F}(d))$$

for d >> 1, where $\mathcal{F}(d) = \mathcal{F} \otimes \mathcal{O}_X(d)$. $P_{\mathcal{F}}(z)$ is the Hilbert polynomial of \mathcal{F} and $P_X := P_{\mathcal{O}_X}$ is called the Hilbert polynomial of X in \mathbb{P}^n .

Facts for P_X (not very trivial)

- 1. $P_X(d) = h^0(X, \mathcal{O}_X(d))$ for d sufficiently large due to the Serre vanishing theorem, i.e. $H^i(X, \mathcal{F}(d)) = 0$ for i > 0 if \mathcal{F} is coherent and d sufficiently large.
- 2. First invariant: $deg(P_X) = \dim X = m$.

- 3. Seconding invariant: leading coefficients of P_X is $\frac{\deg(X)}{m!}$.
- 4. Invariant from the constant term: the arithmetic genus of X: $(-1)^m (P_X(0) 1)$.

All these invariants are deformation invariant.

Example 5 (Invariants determines the geometry). 1. if deg(X) = 1, then X is a projective linear subspace in \mathbb{P}^n .

- 2. More generally, if X is non-degenerate in \mathbb{P}^n , then dim $X + \deg(X) \ge n + 1$.
- * Bézout's theorem

With the knowledge of the degree, we can state Bézout's theorem in arbitrary dimensional projective space.

Theorem 2.1.3. Let X be a projective variety in \mathbb{P}^n_k with dim $X \geq 1$ and H be a hypersurface not containing X. Denote by Z_i the irreducible components of the intersection of H and X. Then

$$\deg(X) \cdot \deg(H) = \sum_{Z_i} \mu(X, H; Z_i) \deg(Z_i)$$

where $\mu(X, H; Z_i)$ is the intersection multiplicity at Z_i .

The proof relies on computing the Hilbert polynomials via the short exact sequence

$$0 \to \mathcal{O}_X(-\deg(H)) \to \mathcal{O}_X \to \mathcal{O}_{X \cap H} \to 0$$

Remark: if \mathfrak{p}_i is the prime ideal corresponds to Z_i , then $\mu(X, H; Z_i)$ is the length of $(k[x_0, \ldots, x_n]/(I_X + I_H))_{\mathfrak{p}_i}$ as a $k[x_0, \ldots, x_n]_{\mathfrak{p}_i}$ -module.

Important consequences

– For projective variety X in \mathbb{P}^n of dimension d, the intersection number with d general hyperplanes

$$H_1 \cdot H_2 \dots \cdot H_d \cdot X$$

is positive. As all hyperplanes are linearly equivalent, it is the same as $H^d \cdot X > 0$.

– More generally, if we call the intersection $L := X \cap H$ the hyperplane class on Y, then $L^d \cdot Y > 0$ for any subvariety $Y \subseteq X$ of dimension d.

2.2 Generic intersection

Among the questions for intersection multiplicity, a natural one is when the intersection multiplicity will be one.

Definition 2.2.1. Let X be a variety over k. A point $p \in X$ is smooth dim $X = \dim T_p X$.

Theorem 2.2.2 (Bertini Theorem). Let $X \subseteq \mathbb{P}(V) \cong \mathbb{P}^n$ be a smooth subvariety of dimension greater than zero. Then for a generic hypersurface $H, Y = X \cap H$ is again smooth.

Proof. 1. Note that the set of hyperplanes is parametrized by the dual projective space $\mathbb{P}(V^{\vee})$.

- 2. To say that a hyperplane is generic is equivalent to saying that there is a nonempty open subset $U \subseteq \mathbb{P}(V^{\vee})$ consisting of points corresponding to that hyperplane and such that each hyperplane in U possesses the desired property.
 - 3. $H \cap X$ will be smooth at x if $T_x X \not\subset T_x H$.
 - 4. Consider the subset

$$Z = \{(H, x) \mid x \in H, T_x X \subset T_x H\} \subseteq \mathbb{P}(V^{\vee}) \times X,$$

it is a closed subset.

- 5. The set of H in $\mathbb{P}(V^{\vee})$ for which $H \cap X$ is singular is the image of Z via the projection $\mathbb{P}(V^{\vee}) \times X \to \mathbb{P}(V^{\vee})$.
 - 6. The assertion follows by an easy dimension count: dim(Z) = n 1.

A more general statement is as follows:

Theorem 2.2.3. Suppose $\operatorname{char}(k) = 0$. Then for any linear system $f: X \dashrightarrow \mathbb{P}^n_k$ and H a generic hyperplane, the pullback $f^{-1}(H)$ is smooth outside the base locus of f.

It fails in positive characteristic fields because the existence of purely inseparable map.

3 Ampleness criteria

Guiding Problem: How to determine the projectivity of a scheme?

Answer: projectivity \iff existence of ample line bundle.

3.1 Linear system

We may identify three concepts: line bundle, Cartier divisor and invertible sheaf.

- Given a morphism $\varphi: X \to \mathbb{P}^n$, we obtain an invertible sheaf $\varphi^*(\mathcal{O}_{\mathbb{P}^n}(1))$.
- Conversely, given a base point free invertible sheaf \mathcal{L} , we obtain morphisms

$$\varphi_{\mathcal{L}}: X \to |\mathcal{L}| = \mathbb{P}(H^0(X, \mathcal{L})^{\vee})$$

So X is projective if and only if there exists a base point free invertible sheaf \mathcal{L} such that φ_L is a closed embedding.

Lemma 3.2. φ_L is a closed embedding if and only if the sections of \mathcal{L} separate points and tangent vectors, i.e.

- 1. $\forall p, q \in X$, there exists $s \in H^0(X, \mathcal{L})$ such that s(p) = 0 and $s(q) \neq 0$.
- 2. $\forall p \in X$, the image of $s \in H^0(X, \mathcal{L})$ with s(p) = 0 spans $(T_p X)^{\vee}$.

Definition 3.2.1. We say that a Cartier divisor D (or an invertible sheaf) is very ample if $\varphi: X \to \mathbb{P}^n$ defines an embedding of X. We say that D is ample if mD is very ample for some $m \in \mathbb{N}$.

Useful Properties

- (very) Ample + (very)Ample is (very) ample. (Segre map)
- (very) Ample + Base point free is (very) ample. (Segre map)
- Invertible + sufficiently ample is ample (above+Serre's theorem)

 A consequence is the every divisor is the difference of two ample divisors.
- Ampleness \Leftrightarrow for $f \in H^0(X, \mathcal{L}^{\otimes n})$, the open susbets $X_f = \{x \in X | f(x) \neq 0\}$ which are affine form a base of the topology of X. (local check)

The guiding problem becomes how to characterize (very) ample line bundles/divisors.

Proposition 3.2.2 (Serre's cohomological criterion). TFAE

- ullet D is ample
- for any quasi-coherent sheaf \mathcal{F} , $H^i(X, \mathcal{F}(mD)) = 0$ for all i > 0 and m sufficiently large.

As a corollary, if $f: X \to Y$ is a finite morphism and D a Cartier divisor on Y, then $f^*(D)$ is ample if D is ample.

Proof. We only prove the corollary. If f is finite, then

$$H^i(X, \mathcal{F}(mf^*D)) = H^i(Y, f_*\mathcal{F}(mD)) = 0$$

for m >> 0.

Note that this fails if f is no longer finite.

3.3 Ampleness v.s. positivity

In complex geometry, a famous result is

Kodaira embedding: Let X be a compact complex manifold. A line bundle L is positive (i.e. it admits a Hermitian metric whose curvature form is positive (1,1)-form) iff L is ample.

Example 6. Any positive degree divisor D on a curve is ample.

Nakai-Moishezon's criterion shows that ampleness is in fact numerical properties.

Theorem 3.3.1 (Nakai-Moishezon). If D is a Cartier divisor on a projective k-scheme X, and for every subvariety Y of X of dimension n, $(D^n \cdot Y) > 0$, then D is ample.

Proof. Sketch of the proof. The proof proceeds by induction on the dimension of X. When $\dim X = 1$, this is from last week. Suppose it holds for $\dim X \leq n-1$. Step 1. for m >> 0, |mD| is non empty.

Write D = A - B as a difference of two very ample divisors A, B. Then we have

$$0 \to \mathcal{O}_X(mD-B) \to \mathcal{O}_X((m+1)D) \to \mathcal{O}_A((m+1)D) \to 0$$

and

$$0 \to \mathcal{O}_X(mD-B) \to \mathcal{O}_X(mD) \to \mathcal{O}_B((mD) \to 0.$$

By long exact sequence, inductive hypothesis and Serre's vanishing $H^i(\mathcal{O}_A((m+1)D)) = H^i(\mathcal{O}_B(mD)) = 0$ for i > 0. One obtain

$$H^i(X, \mathcal{O}_X(mD)) = H^i(X, \mathcal{O}_X((m+1)D))$$

for $i \geq 2$ and m large enough.

By RR, we know

$$\chi(X, mD) = h^0(mD) - h^1(mD) + constant$$

is asymptoically of the form $\frac{m^nD^n}{n!}+\ldots$, which increases to $+\infty$ as $m\to\infty$. Thus $h^0(mD)$ is nonzero.

Step 2. for m >> 0, mD is base point free. Similar idea as above.

Step 3. Consider the morphism $\varphi: X \to |mD|$, then $D = \varphi^*H$. If φ is not finite, then φ contracts some curve C. But

$$D \cdot C = \phi^* H \cdot C = H \cdot \phi_* C = 0$$

which is a contradiction.

For X being a surface, this criterion is equivalent to the following conditions

- $L \cdot C > 0$ for any curve $C \subseteq X$.
- $L^2 > 0$

3.4 Cones and Kleiman's ampleness criteria

Let X be a scheme over k. Note that the sum of ample divisors remain ample, this yields the concept of ample cones:

Definition 3.4.1. Amp(X): the cone generated by ample divisors.

A consequence of Nakai's criterion is that Amp(X) is open. Moreover, we have a complete description of this cone only using the intersection with curves.

Definition 3.4.2. A divisor D on X is nef if $D \cdot C$ for any curve $C \subseteq X$. Then we define NE(X) as the cone generated by nef divisors.

Theorem 3.4.3 (Kleiman). Suppose X is a projective scheme over k. Then

- 1. The nef cone is the closure of the ample cone.
- 2. The ample cone is the interior of the nef cone.

Example 7. The ample cone of $\mathbb{P}^1 \times \mathbb{P}^1$ is

$$\{aD_1 + bD_2, a > 0, b > 0\}$$

where D_1 and D_2 are two rulings.

Example 8. The ample cone of $\mathrm{BL}_p\mathbb{P}^2$ is

$$\{aL - bE, a > b > 0\}$$

where $L = \pi^* \mathcal{O}_{\mathbb{P}^2}(1)$ and E is the exceptional divisor. In particular, 2L - E is ample (in fact very ample).

Similar computation shows that for $\mathrm{BL}_p\mathbb{P}^3$, the divisor 2L-E is ample.