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Kodaira dimension

The key ingredient to distinguish different projective varieties is the

behaviour of the canonical bundle.

Definition

The Kodaira dimension of a surface S is

κpSq :“ max
n

dimϕnK pSq

with the convention dim∅ “ ´8.

Using the plurigenera Pn “ h0pnK q, this translates as

κpSq “ ´8 ðñ Pn “ 0 @n ðñ S ruled (Enriques theorem).

κpSq “ 0 ðñ Pn “ 0 or 1 @n, and “ 1 for some n.

κpSq “ 1 ðñ Pn ě 2 for some n, and dimϕmK pSq ď 1 @m;

κpSq “ 2 ðñ dimϕnK pSq “ 2 for some n.
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Examples

‚ Let B,C be two curves of genus b, c . Then:

κpB ˆ C q “ ´8 ô bc “ 0;

κpB ˆ C q “ 0 ô b “ c “ 1;

κpB ˆ C q “ 1 ô b or c “ 1, bc ą 1;

κpB ˆ C q “ 2 ô b and c ě 2.

‚ Let Sd Ă P3 of degree d ; then Sd is rational for d ď 3,

κpS4q “ 0, κpSdq “ 2 for d ě 5.

These examples show a general pattern: most surfaces have κ “ 2

(they are called of general type), some have κ “ 1, and the cases

κ “ 0 and κ “ ´8 are completely classified.
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κ “ 2

Proposition

Let S be a minimal surface. The following are equivalent:

1 κpSq “ 2;

2 K 2 ą 0 and S not rational;

3 ϕnK birational onto its image for n " 0.

Proof : 3 ñ 1 clear.

2 ñ 3 : let H be a very ample divisor on S . Riemann-Roch ù

χpnK ´ Hq „ 1
2n

2K 2 ą 0 for n " 0, hence

h0pnK ´ Hq ` h0pp1´ nqK ` Hq ą 0.

But
`

p1´ nqK `H
˘

¨K ă 0 for n " 0, hence h0 “ 0 by key Lemma

ñ h0pnK ´Hq ą 0, hence nK ” H `E , E ě 0 ñ ϕnK birational.
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κ “ 2 (continued)

1 ñ 2 : Follows from:

Lemma

S minimal, K 2 “ 0, |nK | “ Z `M with Z fixed part. Then M is

base-point free, and ϕM “ ϕnK : S Ñ C Ă |nK |_.
.

Proof : Key lemma ñ pK ¨ Z q and pK ¨Mq ě 0, hence “ 0.

0 “ M ¨ pZ `Mq ñ M2 “ 0 ñ |M| base-point free, hence

ϕM : S Ñ C Ă |nK |_. M2 “ 0 ñ C curve.

Remark: D much more precise results for 3 (Kodaira, Bombieri):

ϕnK morphism for n ě 4, birational for n ě 5.

Example: For S “ B ˆ C as above,

K 2
BˆC “ pp

˚KB ¨ q
˚KC q “ p2b ´ 2qp2c ´ 2q: K 2

X ą 0 ô b, c ě 2.
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Surfaces with κ “ 1

Proposition

S minimal, κpSq “ 1 ñ K 2 “ 0, and D p : S Ñ B with general

fiber elliptic curve.

(We say that S is an elliptic surface.)

Proof : Choose n such that h0pnK q ě 2, |nK | “ Z ` |M|. By the

Lemma, ϕM : S Ñ C .

Stein factorization: ϕM : S
p
ÝÑ B Ñ C , with fibers of p connected.

F smooth fiber. F ď M ñ K ¨ F “ 0, F 2 “ 0 ñ gpF q “ 1

(genus formula).

Remark : An elliptic surface can be rational, ruled, or have κ “ 0.
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Surfaces with κ “ 0

Theorem

S minimal with κ “ 0.

1 q “ 0, K ” 0: S is a K3 surface;

2 q “ 0, 2K ” 0, K ı 0: S is an Enriques surface – quotient

of a K3 by a fixed-point free involution.

3 q “ 1: S is a bielliptic surface, quotient of a product E ˆ F

of elliptic curves by a finite group acting freely (7 cases).

4 q “ 2: S is an abelian surface (projective complex torus).

We will treat only the cases with q “ 0 (the other cases require

the theory of the Albanese variety). If K ” 0, we are in case 1 .

We want to prove that q “ 0, K ı 0 ñ 2K ” 0.
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S minimal, q “ 0, K ı 0

Proof : For some n, Pn ě 1; by the key Lemma K 2 ě 0, and

K 2 “ 0 by the case κ “ 2.

By Riemann-Roch, h0p2K q ` h0p´K q ě χpOSq ě 1.

If h0p´K q ą 0, |´K | Q D ě 0, |nK | Q E ě 0, nD ` E ” 0 ñ

D ” 0, contradiction. Hence h0p2K q ą 0.

Riemann-Roch: h0p3K q ` h0p´2K q ě 1. Suppose h0p3K q ě 1.

D P |2K |, E P |3K |; 3D, 2E P |6K | ñ 3D “ 2E ñ

D “ 2F ,E “ 3F with F ě 0. But F ” E ´ D ” K , contradiction.

Therefore h0p´2K q ą 0, and 2K ” 0.
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The double cover of an Enriques surface

Let S be an Enriques surface. View KS as a line bundle

p : KÑ S ; we have a non-vanishing section ω of H0p2K q. Let

X “ tx P K | x2 “ ωppxqu

It is a closed subvariety of K; for each y P S there are 2 points in

X above y , exchanged by the involution σ : x ÞÑ ´x . This

involution acts freely, and pX identifies S with X {σ.

The morphism pX : X Ñ S is étale, hence p˚XKS – KX .

Consider the pull back diagram:

K ˆS K //

p1

��

K
p

��
K p // S

p1 has a canonical section x ÞÑ px , xq; this section does not vanish

outside the zero section of K. Therefore p˚K|S “ KX is trivial.

We will admit q “ 0, so X is a K3 surface.
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Examples

‚ S4 Ă P3 (smooth) is a K3 surface.

Indeed KSd ” pd ´ 4qH, so ” 0 for d “ 4. To prove q “ 0 we

admit a classical result:

Lemma

H i pPn,OPnpkqq “ 0 for all k and 0 ă i ă n.

Then from the exact sequence 0 Ñ OP3p´4q Ñ OP3 Ñ OS Ñ 0

we get H1pOSq “ 0.

‚ More generally, for each g ě 3, there is a family of K3 surfaces

of degree 2g ´ 2 in Pg : in P4 we get the intersection of a quadric

and a cubic, in P5 the intersection of 3 quadrics, etc. These

surfaces have a rich geometry and have been, and still are,

extensively studied.
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An Enriques surface

In P5, with homogeneous coordinates X0,X1,X2,X
1
0,X

1
1,X

1
2,

consider the surface S defined by

PpX q ` P 1pX 1q “ QpX q ` Q 1pX 1q “ RpX q ` R 1pX 1q “ 0 ,

where P,Q,R;P 1,Q 1,R 1 are general quadratic forms in 3 variables.

The involution σ : pXi ,X
1
j q ÞÑ p´Xi ,X

1
j q preserves S ; its fixed

points are the 2-planes Xi “ 0 and X 1j “ 0, which are not on S

since the quadratic forms are general. The surface quotient S{σ is

an Enriques surface.

Arnaud Beauville Algebraic surfaces


