Algebraic surfaces

Lecture V: The Kodaira dimension

Arnaud Beauville

Université Côte d'Azur

July 2020

The key ingredient to distinguish different projective varieties is the behaviour of the canonical bundle.

Definition

The Kodaira dimension of a surface S is

$$\kappa(S) := \max_{n} \dim \varphi_{nK}(S)$$

with the convention dim $\emptyset = -\infty$.

Using the plurigenera $P_n = h^0(nK)$, this translates as

• $\kappa(S) = -\infty \iff P_n = 0 \ \forall n \iff S \text{ ruled (Enriques theorem)}.$

•
$$\kappa(S) = 0 \iff P_n = 0 \text{ or } 1 \forall n, \text{ and } = 1 \text{ for some } n.$$

• $\kappa(S) = 1 \iff P_n \ge 2$ for some *n*, and dim $\varphi_{mK}(S) \le 1 \ \forall m$;

• $\kappa(S) = 2 \iff \dim \varphi_{nK}(S) = 2$ for some n.

Examples

• Let B, C be two curves of genus b, c. Then:

•
$$\kappa(B \times C) = -\infty \iff bc = 0;$$

•
$$\kappa(B \times C) = 0 \iff b = c = 1;$$

•
$$\kappa(B \times C) = 1 \iff b \text{ or } c = 1, bc > 1;$$

•
$$\kappa(B \times C) = 2 \iff b \text{ and } c \ge 2.$$

• Let
$$S_d \subset \mathbb{P}^3$$
 of degree d ; then S_d is rational for $d \leq 3$,
 $\kappa(S_4) = 0$, $\kappa(S_d) = 2$ for $d \geq 5$.

These examples show a general pattern: most surfaces have $\kappa = 2$ (they are called **of general type**), some have $\kappa = 1$, and the cases $\kappa = 0$ and $\kappa = -\infty$ are completely classified.

Proposition

Let S be a minimal surface. The following are equivalent:

- **1** $\kappa(S) = 2;$
- 2 $K^2 > 0$ and S not rational;

③ φ_{nK} birational onto its image for $n \gg 0$.

Proof :
$$(3) \Rightarrow (1)$$
 clear.

(2) \Rightarrow (3): let *H* be a very ample divisor on *S*. Riemann-Roch $\rightsquigarrow \chi(nK - H) \sim \frac{1}{2}n^2K^2 > 0$ for $n \gg 0$, hence $h^0(nK - H) + h^0((1 - n)K + H) > 0$. But $((1 - n)K + H) \cdot K < 0$ for $n \gg 0$, hence $h^0 = 0$ by key Lemma $\Rightarrow h^0(nK - H) > 0$, hence $nK \equiv H + E$, $E \ge 0 \Rightarrow \varphi_{nK}$ birational.

$\kappa = 2$ (continued)

$$1 \Rightarrow 2$$
: Follows from:

Lemma

S minimal, $K^2 = 0$, |nK| = Z + M with *Z* fixed part. Then *M* is base-point free, and $\varphi_M = \varphi_{nK} : S \to C \subset |nK|^{\vee}$.

Proof: Key lemma $\Rightarrow (K \cdot Z)$ and $(K \cdot M) \ge 0$, hence = 0. $0 = M \cdot (Z + M) \Rightarrow M^2 = 0 \Rightarrow |M|$ base-point free, hence $\varphi_M : S \to C \subset |nK|^{\vee}$. $M^2 = 0 \Rightarrow C$ curve.

Remark: \exists much more precise results for (3) (Kodaira, Bombieri): φ_{nK} morphism for $n \ge 4$, birational for $n \ge 5$.

Example: For $S = B \times C$ as above,

$$\mathcal{K}^2_{B\times C} = (p^*\mathcal{K}_B \cdot q^*\mathcal{K}_C) = (2b-2)(2c-2): \ \mathcal{K}^2_X > 0 \Leftrightarrow b, c \ge 2.$$

Proposition

S minimal, $\kappa(S) = 1 \implies K^2 = 0$, and $\exists p : S \rightarrow B$ with general fiber elliptic curve.

(We say that *S* is an **elliptic surface**.)

Proof: Choose *n* such that $h^0(nK) \ge 2$, |nK| = Z + |M|. By the Lemma, $\varphi_M : S \to C$.

Stein factorization: $\varphi_M : S \xrightarrow{p} B \to C$, with fibers of p connected.

F smooth fiber. $F \leq M \Rightarrow K \cdot F = 0$, $F^2 = 0 \Rightarrow g(F) = 1$ (genus formula).

Remark : An elliptic surface can be rational, ruled, or have $\kappa = 0$.

Surfaces with $\kappa = 0$

Theorem

- S minimal with $\kappa = 0$.
 - q = 0, $K \equiv 0$: S is a K3 surface;
 - Q = 0, 2K ≡ 0, K ≠ 0: S is an Enriques surface quotient of a K3 by a fixed-point free involution.
 - q = 1: S is a bielliptic surface, quotient of a product E × F of elliptic curves by a finite group acting freely (7 cases).
 - **(**q = 2: *S* is an **abelian surface** (projective complex torus).

We will treat only the cases with q = 0 (the other cases require the theory of the Albanese variety). If $K \equiv 0$, we are in case (1). We want to prove that q = 0, $K \neq 0 \Rightarrow 2K \equiv 0$. **Proof** : For some *n*, $P_n \ge 1$; by the key Lemma $K^2 \ge 0$, and $K^2 = 0$ by the case $\kappa = 2$. By Riemann-Roch, $h^0(2K) + h^0(-K) \ge \chi(\mathcal{O}_S) \ge 1$. If $h^0(-K) > 0$, $|-K| \ni D \ge 0$, $|nK| \ni E \ge 0$, $nD + E \equiv 0 \implies$ $D \equiv 0$, contradiction. Hence $h^0(2K) > 0$. Riemann-Roch: $h^0(3K) + h^0(-2K) \ge 1$. Suppose $h^0(3K) \ge 1$. $D \in |2K|, E \in |3K|; 3D, 2E \in |6K| \implies 3D = 2E \implies$ D = 2F, E = 3F with $F \ge 0$. But $F \equiv E - D \equiv K$, contradiction. Therefore $h^0(-2K) > 0$, and $2K \equiv 0$.

The double cover of an Enriques surface

Let *S* be an Enriques surface. View \mathcal{K}_S as a line bundle $p : \mathcal{K} \to S$; we have a non-vanishing section ω of $H^0(2\mathcal{K})$. Let $X = \{x \in \mathcal{K} \mid x^2 = \omega(px)\}$

It is a closed subvariety of \mathcal{K} ; for each $y \in S$ there are 2 points in X above y, exchanged by the involution $\sigma : x \mapsto -x$. This involution acts freely, and p_X identifies S with X/σ .

The morphism $p_X : X \to S$ is étale, hence $p_X^* \mathcal{K}_S \cong \mathcal{K}_X$.

Consider the pull back diagram:
$$\begin{array}{c} \mathcal{K} \times_{S} \mathcal{K} \longrightarrow \mathcal{K} \\ \downarrow & \downarrow \\ \mathcal{K} \xrightarrow{p} & S \end{array}$$

p' has a canonical section $x \mapsto (x, x)$; this section does not vanish outside the zero section of \mathcal{K} . Therefore $p^*\mathcal{K}_{|S} = \mathcal{K}_X$ is trivial. We will admit q = 0, so X is a K3 surface.

Examples

• $S_4 \subset \mathbb{P}^3$ (smooth) is a K3 surface.

Indeed $K_{S_d} \equiv (d-4)H$, so $\equiv 0$ for d = 4. To prove q = 0 we

admit a classical result:

Lemma

 $H^{i}(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(k)) = 0$ for all k and 0 < i < n.

Then from the exact sequence $0 \to \mathcal{O}_{\mathbb{P}^3}(-4) \to \mathcal{O}_{\mathbb{P}^3} \to \mathcal{O}_S \to 0$ we get $H^1(\mathcal{O}_S) = 0$.

• More generally, for each $g \ge 3$, there is a family of K3 surfaces of degree 2g - 2 in \mathbb{P}^g : in \mathbb{P}^4 we get the intersection of a quadric and a cubic, in \mathbb{P}^5 the intersection of 3 quadrics, etc. These surfaces have a rich geometry and have been, and still are, extensively studied. In \mathbb{P}^5 , with homogeneous coordinates $X_0, X_1, X_2, X_0', X_1', X_2'$, consider the surface S defined by

$$P(X) + P'(X') = Q(X) + Q'(X') = R(X) + R'(X') = 0,$$

where P, Q, R; P', Q', R' are general quadratic forms in 3 variables. The involution $\sigma : (X_i, X'_j) \mapsto (-X_i, X'_j)$ preserves S; its fixed points are the 2-planes $X_i = 0$ and $X'_j = 0$, which are not on Ssince the quadratic forms are general. The surface quotient S/σ is an Enriques surface.