Algebraic surfaces

Lecture V: The Kodaira dimension

Arnaud Beauville

Université Côte d'Azur

July 2020

Kodaira dimension

The key ingredient to distinguish different projective varieties is the behaviour of the canonical bundle.

Definition

The Kodaira dimension of a surface S is

$$
\kappa(S):=\max _{n} \operatorname{dim} \varphi_{n K}(S)
$$

with the convention $\operatorname{dim} \varnothing=-\infty$.

Using the plurigenera $P_{n}=h^{0}(n K)$, this translates as

- $\kappa(S)=-\infty \Longleftrightarrow P_{n}=0 \forall n \Longleftrightarrow S$ ruled (Enriques theorem).
- $\kappa(S)=0 \Longleftrightarrow P_{n}=0$ or $1 \forall n$, and $=1$ for some n.
- $\kappa(S)=1 \Longleftrightarrow P_{n} \geqslant 2$ for some n, and $\operatorname{dim} \varphi_{m K}(S) \leqslant 1 \forall m$;
- $\kappa(S)=2 \Longleftrightarrow \operatorname{dim} \varphi_{n K}(S)=2$ for some n.

Examples

- Let B, C be two curves of genus b, c. Then:
- $\kappa(B \times C)=-\infty \Leftrightarrow b c=0$;
- $\kappa(B \times C)=0 \Leftrightarrow b=c=1$;
- $\kappa(B \times C)=1 \Leftrightarrow b$ or $c=1, b c>1$;
- $\kappa(B \times C)=2 \Leftrightarrow b$ and $c \geqslant 2$.
- Let $S_{d} \subset \mathbb{P}^{3}$ of degree d; then S_{d} is rational for $d \leqslant 3$, $\kappa\left(S_{4}\right)=0, \kappa\left(S_{d}\right)=2$ for $d \geqslant 5$.

These examples show a general pattern: most surfaces have $\kappa=2$ (they are called of general type), some have $\kappa=1$, and the cases $\kappa=0$ and $\kappa=-\infty$ are completely classified.

$\kappa=2$

Proposition

Let S be a minimal surface. The following are equivalent:
(1) $\kappa(S)=2$;
(2) $K^{2}>0$ and S not rational;
(3) $\varphi_{n K}$ birational onto its image for $n \gg 0$.

Proof : (3) \Rightarrow (1) clear.
(2) \Rightarrow (3): let H be a very ample divisor on S. Riemann-Roch $m s$ $\chi(n K-H) \sim \frac{1}{2} n^{2} K^{2}>0$ for $n \gg 0$, hence
$h^{0}(n K-H)+h^{0}((1-n) K+H)>0$.
But $((1-n) K+H) \cdot K<0$ for $n \gg 0$, hence $h^{0}=0$ by key Lemma
$\Rightarrow h^{0}(n K-H)>0$, hence $n K \equiv H+E, E \geqslant 0 \Rightarrow \varphi_{n K}$ birational.

$\kappa=2$ (continued)

(1) \Rightarrow (2): Follows from:

Lemma

S minimal, $K^{2}=0,|n K|=Z+M$ with Z fixed part. Then M is base-point free, and $\varphi_{M}=\varphi_{n K}: S \rightarrow C \subset|n K|^{\vee}$.

Proof : Key lemma $\Rightarrow(K \cdot Z)$ and $(K \cdot M) \geqslant 0$, hence $=0$.
$0=M \cdot(Z+M) \Rightarrow M^{2}=0 \Rightarrow|M|$ base-point free, hence $\varphi_{M}: S \rightarrow C \subset|n K|^{\vee}$. $M^{2}=0 \Rightarrow C$ curve.

Remark: \exists much more precise results for (3) (Kodaira, Bombieri): $\varphi_{n K}$ morphism for $n \geqslant 4$, birational for $n \geqslant 5$.

Example: For $S=B \times C$ as above, $K_{B \times C}^{2}=\left(p^{*} K_{B} \cdot q^{*} K_{C}\right)=(2 b-2)(2 c-2): K_{X}^{2}>0 \Leftrightarrow b, c \geqslant 2$.

Surfaces with $\kappa=1$

Proposition

S minimal, $\kappa(S)=1 \Rightarrow K^{2}=0$, and $\exists p: S \rightarrow B$ with general fiber elliptic curve.

(We say that S is an elliptic surface.)

Proof: Choose n such that $h^{0}(n K) \geqslant 2,|n K|=Z+|M|$. By the Lemma, $\varphi_{M}: S \rightarrow C$.
Stein factorization: $\varphi_{M}: S \xrightarrow{p} B \rightarrow C$, with fibers of p connected.
F smooth fiber. $F \leqslant M \Rightarrow K \cdot F=0, F^{2}=0 \Rightarrow g(F)=1$
(genus formula).
Remark : An elliptic surface can be rational, ruled, or have $\kappa=0$.

Surfaces with $\kappa=0$

Theorem

S minimal with $\kappa=0$.
(1) $q=0, K \equiv 0: S$ is a $K 3$ surface;
(2) $q=0,2 K \equiv 0, K \not \equiv 0: S$ is an Enriques surface - quotient of a K3 by a fixed-point free involution.
(3) $q=1$: S is a bielliptic surface, quotient of a product $E \times F$ of elliptic curves by a finite group acting freely (7 cases).
(4) $q=2: S$ is an abelian surface (projective complex torus).

We will treat only the cases with $q=0$ (the other cases require the theory of the Albanese variety). If $K \equiv 0$, we are in case (1).
We want to prove that $\quad q=0, K \not \equiv 0 \Rightarrow 2 K \equiv 0$.

S minimal, $q=0, K \neq 0$

Proof: For some $n, P_{n} \geqslant 1$; by the key Lemma $K^{2} \geqslant 0$, and $K^{2}=0$ by the case $\kappa=2$.
By Riemann-Roch, $h^{0}(2 K)+h^{0}(-K) \geqslant \chi\left(\mathcal{O}_{S}\right) \geqslant 1$.
If $h^{0}(-K)>0,|-K| \ni D \geqslant 0,|n K| \ni E \geqslant 0, n D+E \equiv 0 \Rightarrow$
$D \equiv 0$, contradiction. Hence $h^{0}(2 K)>0$.
Riemann-Roch: $h^{0}(3 K)+h^{0}(-2 K) \geqslant 1$. Suppose $h^{0}(3 K) \geqslant 1$.
$D \in|2 K|, E \in|3 K| ; 3 D, 2 E \in|6 K| \Rightarrow 3 D=2 E \Rightarrow$
$D=2 F, E=3 F$ with $F \geqslant 0$. But $F \equiv E-D \equiv K$, contradiction.
Therefore $h^{0}(-2 K)>0$, and $2 K \equiv 0$.

The double cover of an Enriques surface

Let S be an Enriques surface. View \mathcal{K}_{S} as a line bundle $p: \mathcal{K} \rightarrow S$; we have a non-vanishing section ω of $H^{0}(2 K)$. Let

$$
X=\left\{x \in \mathcal{K} \mid x^{2}=\omega(p x)\right\}
$$

It is a closed subvariety of \mathcal{K}; for each $y \in S$ there are 2 points in X above y, exchanged by the involution $\sigma: x \mapsto-x$. This involution acts freely, and p_{X} identifies S with X / σ. The morphism $p_{X}: X \rightarrow S$ is étale, hence $p_{X}^{*} \mathcal{K}_{S} \cong \mathcal{K}_{X}$.

Consider the pull back diagram:

p^{\prime} has a canonical section $x \mapsto(x, x)$; this section does not vanish outside the zero section of \mathcal{K}. Therefore $p^{*} \mathcal{K}_{\mid S}=\mathcal{K}_{X}$ is trivial. We will admit $q=0$, so X is a K3 surface.

Examples

- $S_{4} \subset \mathbb{P}^{3}$ (smooth) is a K3 surface.

Indeed $K_{S_{d}} \equiv(d-4) H$, so $\equiv 0$ for $d=4$. To prove $q=0$ we admit a classical result:

Lemma

$H^{i}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(k)\right)=0$ for all k and $0<i<n$.

Then from the exact sequence $0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-4) \rightarrow \mathcal{O}_{\mathbb{P}^{3}} \rightarrow \mathcal{O}_{S} \rightarrow 0$ we get $H^{1}\left(\mathcal{O}_{S}\right)=0$.

- More generally, for each $g \geqslant 3$, there is a family of K3 surfaces of degree $2 g-2$ in \mathbb{P}^{g} : in \mathbb{P}^{4} we get the intersection of a quadric and a cubic, in \mathbb{P}^{5} the intersection of 3 quadrics, etc. These surfaces have a rich geometry and have been, and still are, extensively studied.

An Enriques surface

In \mathbb{P}^{5}, with homogeneous coordinates $X_{0}, X_{1}, X_{2}, X_{0}^{\prime}, X_{1}^{\prime}, X_{2}^{\prime}$, consider the surface S defined by

$$
P(X)+P^{\prime}\left(X^{\prime}\right)=Q(X)+Q^{\prime}\left(X^{\prime}\right)=R(X)+R^{\prime}\left(X^{\prime}\right)=0
$$

where $P, Q, R ; P^{\prime}, Q^{\prime}, R^{\prime}$ are general quadratic forms in 3 variables.
The involution $\sigma:\left(X_{i}, X_{j}^{\prime}\right) \mapsto\left(-X_{i}, X_{j}^{\prime}\right)$ preserves S; its fixed points are the 2-planes $X_{i}=0$ and $X_{j}^{\prime}=0$, which are not on S since the quadratic forms are general. The surface quotient S / σ is an Enriques surface.

