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1. Introduction

In this lecture, we consider a (Noetherian) commutative ring R with iden-
tity element.

I will assume that students know about basic definitions and properties
of rings, ideals, modules, morphisms (e.g. Chapter 1–3 of [1]). Our main
textbook is [2]. We will cover selected topics in order to serve the lecture of
geometry of syzygies ([2, Section 17–19]).

1.1. Nakayama’s lemma. The Jacobson radical J(R) of R is the intersec-
tion of all maximal ideals. Note that y ∈ J(R) iff 1 − xy is a unit in R for
every x ∈ R.
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Theorem 1.1 (Nakayama’s lemma). Let I be an ideal contained in the
Jacobson radical of R, and M a finitely generated R-module. If IM = M ,
then M = 0.

Lemma 1.2. Let I be an R-ideal and M a finitely generated R-module. If
IM = M , then there exists y ∈ I such that (1− y)M = 0.

Proof. This is a consequence of the Caylay–Hamilton theorem. Consider
m1, . . . ,mn a set of generators in M , then there exists an n × n matrix
A with coefficients in I such that (m1, . . . ,mn)T = A(m1, . . . ,mn)T . Set
m = (m1, . . . ,mn)T . Hence (In−A)m = 0. Note that adj(In−A)(In−A) =
det(In −A)In, we know that det(In −A)m = 0, that is, det(In −A)mi = 0
for all i. This implies that det(In −A)M = 0. �

Example 1.3. If we do not assume that M is finitely generated, this is not
true. For example, consider R = k[[x]], M = k[[x, x−1]].

Corollary 1.4. Let I be an ideal contained in the Jacobson radical of R,
and M a finitely generated R-module. If N + IM = M for some submodule
N ⊂M , then M = N .

Proof. Apply Nakayama’s lemma to M/N . �

Corollary 1.5. Let (R,m) be a local ring and M a finitely generated R-
module. Consider m1, . . . ,mn ∈ M . If m̄1, . . . , m̄n ∈ M/mM is a basis (as
a R/m-vector space), then m1, . . . ,mn generates M (which is also a minimal
set of generators.)

Proof. Apply Corollary 1.4 to N the submodule generated by m1, . . . ,mn.
�

1.2. Noetherian rings.

Definition 1.6 (Noetherian ring). A ring R is Noetherian if one of the
following equivalent conditions holds:

(1) Every non-empty set of ideals has a maximal element;
(2) The set of ideals satisfies the ascending chain condition (ACC);
(3) Every ideal is finitely generated.

In this lecture, we assume all rings are Noetherian and all modules are
finitely generated for simplicity.

Theorem 1.7 (Hilbert basis theorem). If R is Noetherian, then R[x] is
Noetherian.

Idea of proof. Consider I ⊂ R[x] an ideal. Consider J ⊂ R the leading
coefficients of I, then J is finitely generated. We may assume that J is
generated by the leading coefficients of f1, . . . , fn ∈ R[x]. Take I ′ be the
ideal generated by f1, . . . , fn, then it is easy to see that any f ∈ I can be
written as f = f ′ + g with f ′ ∈ I ′ and deg g < maxi{deg fi} = r. So

I = I ∩ (R⊕Rx⊕ · · · ⊕Rxr−1) + I ′

is finitely generated. (Check that I ∩ (R ⊕ Rx ⊕ · · · ⊕ Rxr−1) is finitely
generated!) �

Example 1.8. Any quotient of polynomial ring k[x1, . . . , xn]/I is Noether-
ian.
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1.3. Associated primes. We will use the notion (A : B) to define the set
{a | aB ⊂ A} whenever it makes sense. For example, if N,N ′ ⊂ M are
R-modules and I an ideal, then we can define (N : I) as a submodule of M ,
and (N ′ : N) an ideal. Usually the set (0 : N) is denoted by ann(N) and
called the annihilator of N , that is, the set of elements whose multiplication
action kills N .

Definition 1.9 (Associated prime). A prime P of R is associated to M if
P = ann(x) for some x ∈M.

Associated primes are important in the primary decomposition. But here
we mainly focus on its relation with zero-divisors.

Theorem 1.10. Let R be a Noetherian ring and M a finitely generated
R-module. Then the union of associated primes to M consists of zero and
zero-divisors. Moreover, there are only finitely many associated primes.

Proof. We want to show that⋃
ann(x):prime

ann(x) =
⋃
x 6=0

ann(x).

So it suffices to show that if ann(y) is maximal among all ann(x), then ann(y)
is prime. Consider rs ∈ ann(y) such that s 6∈ ann(y), then rsy = 0 but
sy 6= 0. We know that ann(y) ⊂ ann(sy), so equality holds by maximality.
This implies that r ∈ ann(y).

To prove the finiteness, we only outline the idea here. Denote Ass(M) the
set of associated primes. Then it is not hard to see that for a short exact
sequence

0→M ′ →M →M ′′ → 0,

we have
Ass(M ′) ⊂ Ass(M) ⊂ Ass(M ′) ∪Ass(M ′′).

So inductively we get the finiteness. �

Remark 1.11. Another fact is that if P is a prime minimal among all primes
containing ann(M), then P is an associated prime.

Corollary 1.12. Let R be a Noetherian ring and M a finitely generated
R-module. Let I be an ideal. Then either I contains a non zero-divisor on
M , or I annihilated a non-zero element of M .

Proof. Suppose that I contains only zero-divisors on M , then by Theo-
rem 1.10, I ⊂

⋃
ann(x):prime ann(x). So the conclusion follows from the fol-

lowing easy lemma. �

Lemma 1.13. Let I be an ideal and let P1, . . . , Pn be primes of R. If
I ⊂

⋃
i Pi, then I ⊂ Pi for some i.

1.4. Tensor products and Tor. Let M,N be R-modules, the tensor prod-
uct M ⊗N is defined by the module generated by

{m⊗ n | m ∈M,n ∈ N},
modulo relations

(m+m′)⊗ n = m⊗ n+m′ ⊗ n;
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m⊗ (n+ n′) = m⊗ n+m⊗ n′;
(rm)⊗ n = m⊗ (rn) = r(m⊗ n)

for m ∈M,n ∈ N, r ∈ R. It can be characterized by the universal property
that if f : M × N → P is an R-bilinear map, then there exists a unique
g : M ⊗N → P such that f factors through g.

Example 1.14. (1) M ⊗R 'M , M ⊗Rn 'Mn;
(2) M ⊗R/I 'M/IM ;
(3) (M ⊗R N)P 'MP ⊗RP

NP .

Proposition 1.15. (−⊗N) is a right-exact functor. If

M ′
f−→M

g−→M ′′ → 0

is a exact sequence of R-modules, then

M ′ ⊗N f⊗1−−→M ⊗N g⊗1−−→M ′′ ⊗N → 0

is exact.

Definition 1.16 (Flat module). N is flat if (− ⊗ N) is an exact functor,
that is, if

0→M ′ →M →M ′′ → 0

is a exact sequence of R-modules, then

0→M ′ ⊗N →M ⊗N →M ′′ ⊗N → 0

is exact.

To study flatness, we need to introduce Tor from homological algebra.

Definition 1.17 (Projective module). An R-module M is projective if for
any surjective map f : N1 → N2 and any map g : M → N2, there exists
h : M → N1 such that f ◦ h = g.

Example 1.18. Free modules are flat and projective.

Definition 1.19 (Complexes and homologies). A complex of R-modules is
a sequence of R-modules with (differential) homomorphisms

F : · · · → Fi+1
δi+1−→ Fi

δi−→ Fi−1 → . . .

such that δiδi+1 = 0 for each i. Denote the homology to be Hi(F) =
ker(δi)/im(δi+1). We say that F is exact at degree i if Hi(F) = 0. A
morphism of complexes φ : F → G is given by φi : Fi → Gi commuting with
differentials, that is, we have a commutative diagram

F : . . . // Fi+1
//

φi+1

��

Fi //

φi
��

Fi−1 //

φi−1

��

. . .

G : . . . // Gi+1
// Gi // Gi−1 // . . .

This naturally gives morphisms between homologies φi : Hi(F)→ Hi(G).
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Definition 1.20 (Projective resolution). A projective resolution of an R-
module M is a complex of projective modules

F : · · · → Fn → · · · → F1
φ1−→ F0

which is exact and coker(φ1) = M . Sometimes we also denote it by

F : · · · → Fn → · · · → F1
φ1−→ F0(→M → 0).

Definition 1.21 (Left derived functor). Let T be a right-exact functor.
Given a projective resolution of an R-module M :

F : · · · → Fn → · · · → F1
φ1−→ F0(→M → 0).

Define the left derived functor by LiT (M) := Hi(TF), which is just the
homology of

TF : · · · → T (Fn)→ · · · → T (F1)→ T (F0)(→ T (M)→ 0).

We collect basic properties of derived functors here.

Proposition 1.22. (1) L0T (M) = T (M);
(2) LiT (M) is independent of the choice of projective resolution;
(3) If M is projective, then LiT (M) = 0 for i > 0.
(4) For a short exact sequence of R-modules

0→ A→ B → C → 0,

we have a long exact sequence

. . .

→ L3T (A)→ L3T (B)→ L3T (C)

→ L2T (A)→ L2T (B)→ L2T (C)

→ L1T (A)→ L1T (B)→ L1T (C)

→ T (A)→ T (B)→ T (C)→ 0.

Definition 1.23 (Tor). For an R-module N , TorRi (−, N) is defined by
LiT (−) where T = (−⊗N).

Remark 1.24. So to compute TorRi (M,N), we should pick a projective res-
olution F of M and compute Hi(F ⊗ N). Note that tensor products are
symmetric, that is, M ⊗ N ' N ⊗M , it can be seen that TorRi (M,N) '
TorRi (N,M), and TorRi (M,N) can be also computed by pick a projective
resolution G of N and compute Hi(M ⊗ G).

Theorem 1.25. TFAE:

(1) N is flat;
(2) TorRi (M,N) = 0 for all i > 0 and all M ;
(3) TorR1 (M,N) = 0 for all M .

Proof. (1) =⇒ (2): take a projective resolution F of M , we need to
compute Hi(F ⊗N). As N is flat, F ⊗N is exact, hence TorRi (M,N) = 0
for all i > 0.

(2) =⇒ (3): trivial.
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(3) =⇒ (1): this follows from the long exact sequence

TorR1 (M ′′, N)→M ′ ⊗N →M ⊗N →M ′′ ⊗N → 0.

�

2. Koszul complexes and regular sequences

2.1. Regular sequences.

Definition 2.1 (Regular sequence). Let R be a ring and M an R-module.
A sequence of elements x1, . . . , xn ∈ R is called a regular sequence on M (or
M -sequence) if

(1) (x1, . . . , xn)M 6= M ;
(2) For each 1 ≤ i ≤ n, xi is not a zero-divisor on M/(x1, . . . , xi−1)M .

Definition 2.2 (Depth). Let R be a ring, I an ideal, and M an R-module.
Suppose IM 6= M . The depth of I on M , depth(I,M), is defined by the
maximal length of M -sequences in I.

Remark 2.3. (1) If M = R, then simply denote depth I := depth(I,M).
(2) We will see soon (Theorem 2.15) that any maximal M -sequence has

the same length.

Example 2.4. If R = k[x1, . . . , xn], then x1, . . . , xn is a regular sequence.
We will see soon that depth(x1, . . . , xn) = n.

Remark 2.5. The depth measures the size of an ideal, and an element in the
regular sequence corresponds to a hypersurface in geometry. So a regular
sequence in I corresponds to a set of hypersurface containing V (I) intersect-
ing each other “properly”. Consider for example R = k[x, y] or k[x, y]/(xy),
I = (x, y).

2.2. Koszul complexes.

Definition 2.6 (Complexes and homologies). A complex of R-modules is a
sequence of R-modules with homomorphisms

F : · · · →Mi−1
δi−1−→Mi

δi−→Mi+1 → . . .

such that δiδi−1 = 0 for each i. Denote the (co)homology to be H i(F) =
ker(δi)/im(δi−1).

We will introduce Koszul complexes and explain how regular sequences
are related to Koszul complexes.

Example 2.7 (Koszul complex of length 1). Given x ∈ R. The Koszul
complex of length 1 is given by

K(x) : 0→ R
x−→ R→ 0.

Note that H0(K(x)) = (0 : x), H1(K(x)) = R/xR. Then x is an R-sequence
if (1) H1(K(x)) 6= 0; (2) H0(K(x)) = 0.
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Example 2.8 (Koszul complex of length 2). Given x, y ∈ R. The Koszul
complex of length 2 is given by

K(x, y) : 0→ R

(
y
x

)
−−−→ R⊕2

(
−x y

)
−−−−−−→ R→ 0.

Note that H0(K(x, y)) = (0 : (x, y)). H2(K(x, y)) = R/(x, y)R. We can
compute H1(K(x, y)) (Exercise). It turns out that if x is not a zero-divisor
in R, then H1(K(x, y)) ' (x : y)/(x). So H1(K(x, y)) = 0 if and only if
y is not a zero-divisor of R/(x). In conclusion, x, y is an R-sequence if (1)
H2(K(x, y)) 6= 0; (2) H0(K(x, y)) = H1(K(x, y)) = 0.

Theorem 2.9. Let (R,m) be a local ring and x, y ∈ m. Then x, y is a regular
sequence iff H1(K(x, y)) = 0. In particular, x, y is a regular sequence iff y, x
is a regular sequence.

Proof. This is not a direct consequence of the above argument, as we need
to show that x is a non-zero-divisor (equivalent to H0(K(x)) = 0). Write
K(x, y) as the following:

0 // R
y

��

x // R
y

��

//

⊕ 0

0 // R
−x // R // 0.

Then this gives a short exact sequence of complexes

K(x)[−1] : 0

��

// R

i2
��

−x // R

1

��

// 0

K(x, y) : 0 // R

1

��

// R2

p1

��

// R

��

// 0

K(x) : 0 // R
x // R // 0

.

That is,

0→ K(x)[−1]→ K(x, y)→ K(x)→ 0.

Then this induces a long exact sequences of homologies

H0(K(x))
y−→ H0(K(x))→ H1(K(x, y))→ H1(K(x)).

So H1(K(x, y)) = 0 implies that yH0(K(x)) = H0(K(x)), which means
that H0(K(x)) = 0 by Nakayama’s lemma. �

Corollary 2.10. Let (R,m) be a local ring and x1, . . . , xn ∈ m. Suppose
that x1, . . . , xn is a regular sequence, then any permutation of x1, . . . , xn is
again a regular sequence. (Exercise.)

We will define Koszul complexes and show this correspondence in general.

Definition 2.11 (Exterior algebra). Let N be an R-module. Denote the
tensor algebra

T (N) = R⊕N ⊕ (N ⊗N)⊕ . . .



8 CHEN JIANG

The exterior algebra
∧
N = ⊕m

∧mN is defined by T (N) modulo the rela-
tions x⊗x (and hence x⊗y+y⊗x) for x, y ∈ N . The product of a, b ∈

∧
N

is written as a ∧ b.

Definition 2.12 (Koszul complex). Let N be an R-module, x ∈ N . Define
the Koszul complex to be

K(x) : 0→ R→ N →
∧2

N → · · · →
∧i

N
dx−→

∧i+1
N → . . .

where dx sends a to x∧ a. If N ' Rn is a free module of rank n (we always
consider this situation) and x = (x1, . . . , xn) ∈ Rn, then we denote K(x) by
K(x1, . . . , xn).

Remark 2.13. (1) The R→ N maps 1 to x.

(2) Consider N = R2 (with basis e1, e2) and x = (x1, x2), then
∧2N ' R

(with bases e1 ∧ e2), and the map N →
∧2N is given by e1 7→

(x1e1 + x2e2)∧ e1 = −x2e1 ∧ e2 and e2 7→ x1e1 ∧ e2. In other words,

K(x1, x2) : 0→ R

(
x1
x2

)
−−−−→ R⊕2

(
−x2 x1

)
−−−−−−−−→ R→ 0.

Example 2.14. Hn(K(x1, . . . , xn)) = R/(x1, . . . , xn). Consider the corre-
sponding complex ∧n−1

N
dx−→

∧n
N →

∧n+1
N = 0

Denote e1, . . . , en to be a basis of N ' Rn, then the basis of
∧nN is just

e1∧ · · ·∧ en, and the basis of
∧n−1N is e1∧ · · ·∧ êi∧ · · ·∧ en (1 ≤ i ≤ n). dx

maps e1 ∧ · · · ∧ êi ∧ · · · ∧ en to (−1)i−1xie1 ∧ · · · ∧ en. So imdx = (x1, . . . , xn)
and Hn(K(x1, . . . , xn)) = R/(x1, . . . , xn).

2.3. Koszul complexes versus regular sequences. Now we can state
the main theorem of this section.

Theorem 2.15. Let M be a finitely generated R-module. If

Hj(M ⊗K(x1, . . . , xn)) = 0

for j < r and Hr(M ⊗K(x1, . . . , xn)) 6= 0, then every maximal M -sequence
in I = (x1, . . . , xn) ⊂ R has length r.

Idea of proof. Firstly, we consider the case that x1, . . . , xs is a maximal M -
sequence. In this case it is natural to prove this case by induction on n and
s.

In order to reduce the general case to this case, we consider y1, . . . , ys a
maximal M -sequence, and consider Hj(M ⊗K(y1, . . . , ys, x1, . . . , xn)).

So to deal with both cases, we need to investigate the relation between
K(y1, . . . , ys, x1, . . . , xn) and K(x1, . . . , xn) and the relation of their homolo-
gies. �

Corollary 2.16. If x1, . . . , xn is an M -sequence, then Hj(M⊗K(x1, . . . , xn)) =
0 for j < n and Hn(M ⊗K(x1, . . . , xn)) = M/(x1, . . . , xn)M.
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Proof. By definition, depth(I,M) ≥ n, so Hj(M ⊗K(x1, . . . , xn)) = 0 for
j < n. On the other hand,

Hn(M ⊗K(x1, . . . , xn)) = coker(M ⊗
∧n−1

N →M ⊗
∧n

N)

= M ⊗ coker(
∧n−1

N →
∧n

N)

= M ⊗R/(x1, . . . , xn) = M/(x1, . . . , xn)M.

Here we use the fact that M ⊗− is right-exact. �

Theorem 2.15 can be strengthen for local rings.

Theorem 2.17. Let (R,m) be a local ring, x1, . . . , xn ∈ m. Let M be a
finitely generated R-module. If Hk(M ⊗ K(x1, . . . , xn)) = 0 for some k,
then Hj(M ⊗ K(x1, . . . , xn)) = 0 for all j < r. Moreover, if Hn−1(M ⊗
K(x1, . . . , xn)) = 0, then x1, . . . , xn is an M -sequence.

Corollary 2.18. If R is local and (x1, . . . , xn) is a proper ideal containing
an M -sequence of length n, then x1, . . . , xn is an M -sequence.

Proof. Hn(M ⊗ K(x1, . . . , xn)) = M/(x1, . . . , xn)M 6= 0 by Nakayama’s
lemma. Take r minimal such that Hr(M ⊗K(x1, . . . , xn)) 6= 0, then every
maximal M -sequence in (x1, . . . , xn) has length r, which implies that r ≥ n.
So Hn−1(M ⊗K(x1, . . . , xn)) = 0 and x1, . . . , xn is an M -sequence. �

2.4. Operations on Koszul complexes.

Definition 2.19 (Tensor product of two complexes). Given two complexes

F : · · · → Fi
φi−→ Fi+1 → . . . ;

G : · · · → Gi
ψi−→ Gi+1 → . . .

define the tensor product

F ⊗ G : · · · →
⊕
i+j=k

Fi ⊗Gj
dk−→

⊕
i+j=k+1

Fi ⊗Gj → . . . ,

where the map Fi ⊗Gj → Fi′ ⊗Gj′ is


φi ⊗ 1 if i′ = i+ 1;

(−1)i1⊗ ψj if j′ = j + 1;

0 otherwise.

(Check

dd = 0.)

Definition 2.20 (Shift). Given a complex

F : · · · → Fi
φi−→ Fi+1 → . . . ;

Denote F [n] to be the complex obtained by shifting F (to the left) n times.
That is, F [n]i = Fn+i, and the differential is multiplied by (−1)n. Denote
R[n] to be the simple complex whose n-th position is R. Note that F [n] =
R[n]⊗F .

Definition 2.21 (Mapping cone). For y ∈ R, consider F = K(y), that is,

F : 0→ R
y−→ R→ 0.
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Then there is a natural exact sequence of complexes

0→ R[−1]→ F → R→ 0.

Tensoring a complex G, this gives an exact sequence

0→ G[−1]→ F ⊗ G → G → 0.

Here F ⊗ G is the mapping cone of the map G y−→ G, in fact, it is given by

. . .

""

// Gi⊕ y

##

(−1)iψi// Gi+1

y

##

//

⊕ Gi+2⊕ y

""

// . . .

. . . // Gi−1
(−1)i−1ψi−1

// Gi // Gi+1
// . . . .

From this exact sequence, we get a long exact sequence of homologies

· · · → H i−1(G)
y−→ H i−1(G)→ H i(F ⊗ G)→ H i(G)

y−→ . . . .

Here note that H i−1(G) = H i(G[−1]).

Proposition 2.22. If N = N ′ ⊕N ′′, then
∧
N =

∧
N ′ ⊗

∧
N ′′. If x′ ∈ N

and x′′ ∈ N ′′, take x = (x′, x′′) ∈ N , then K(x) = K(x′)⊗K(x′′).

Proof. Note that here the (skew-commutative) algebra structure of
∧
N ′ ⊗∧

N ′′ is given by

(a⊗ b) ∧ (a′ ⊗ b′) = (−1)deg a
′ deg b((a ∧ a′)⊗ (b ∧ b′))

for homogenous elements. This is just linear algebra. It suffices to check
the differentials coincide, that is, for y′ ∈

∧
N ′, y′′ ∈

∧
N ′′, x ∧ (y′ ⊗ y′′) =

(x′ ⊗ 1 + 1⊗ x′′) ∧ (y′ ⊗ y′′) = (x′ ∧ y′)⊗ y′′ + (−1)deg y
′
y′ ⊗ (x′′ ∧ y′′). �

Corollary 2.23. If y1, . . . , yr are elements in (x1, . . . , xn) and M is an
R-module, then

H∗(M ⊗K(x1, . . . , xn, y1, . . . , yr)) ' H∗(M ⊗K(x1, . . . , xn))⊗
∧
Rr

as graded modules, which means that

H i(M ⊗K(x1, . . . , xn, y1, . . . , yr)) '
⊕
j+k=i

Hj(M ⊗K(x1, . . . , xn))⊗
∧k

Rr.

So H i(M ⊗ K(x1, . . . , xn, y1, . . . , yr)) = 0 iff Hj(M ⊗ K(x1, . . . , xn)) = 0
for any i− r ≤ j ≤ i.

Proof. As y1, . . . , yr are elements in (x1, . . . , xn), there is an isomorphism

Rn ⊕Rr ' Rn ⊕Rr

sending (x1, . . . , xn, y1, . . . , yn) to (x1, . . . , xn, 0, . . . , 0). So by functoriality
of Koszul complex,

K(x1, . . . , xn, y1, . . . , yr) ' K(x1, . . . , xn, 0, . . . , 0)

' K(x1, . . . , xn)⊗K(0, . . . , 0).

Here

K(0, . . . , 0) : 0→ R
0−→

∧2
Rr

0−→ . . .
0−→

∧r
Rr → 0.

�
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Corollary 2.24. If x = (x′, y) ∈ N = N ′ ⊕ R, then K(x) is isomorphic to

the mapping cone of K(x′)
y−→ K(x′). In particular, we have a long exact

sequence

· · · → H i(M ⊗K(x′))
y−→ H i(M ⊗K(x′))→ H i+1(M ⊗K(x))→

→ H i+1(M ⊗K(x′))
y−→ H i+1(M ⊗K(x′))→ . . .

Proof. Note that N ′⊕R ' R⊕N ′. Hence K(x) ' K(y, x′) = K(y)⊗K(x′).
This gives a short exact sequence

0→ K(x′)[−1]→ K(x)→ K(x′)→ 0.

Tensoring with M , we get

0→M ⊗K(x′)[−1]→M ⊗K(x)→M ⊗K(x′)→ 0.

(Why exact?). �

2.5. Proof of the main theorems. The following is a more precise ver-
sion.

Corollary 2.25. If x1, . . . , xi is an M -sequence, then

H i(M ⊗K(x1, . . . , xn)) = ((x1, . . . , xi)M : (x1, . . . , xn))/(x1, . . . , xi)M.

In particular, in this case, Hj(M⊗K(x1, . . . , xn)) = 0 for j < i. If IM 6= M
(I = (x1, . . . , xn)) and x1, . . . , xi is a maximal M -sequence, then H i(M ⊗
K(x1, . . . , xn)) 6= 0.

Proof. We do induction on i. If i = 0 this is trivial. If i > 0, then we do
induction on n. If n = i, this follows easily by Example 2.14. If n > i, then
by Corollary 2.24, there is an exact sequence

H i−1(M ⊗K(x1, . . . , xn−1))→ H i(M ⊗K(x1, . . . , xn))→

→ H i(M ⊗K(x1, . . . , xn−1))
xn−→ H i(M ⊗K(x1, . . . , xn−1))

Here by induction,

H i−1(M⊗K(x1, . . . , xn−1)) = ((x1, . . . , xi−1)M : (x1, . . . , xn−1))/(x1, . . . , xi−1)M = 0

as xi is not a zeo-divisor of M/(x1, . . . , xi−1)M (this also proves the second
statement). Hence H i(M ⊗K(x1, . . . , xn)) is just the kernel of

H i(M ⊗K(x1, . . . , xn−1))
xn−→ H i(M ⊗K(x1, . . . , xn−1)).

By induction,

H i(M ⊗K(x1, . . . , xn−1)) = ((x1, . . . , xi)M : (x1, . . . , xn−1))/(x1, . . . , xi)M,

so it easy to compute the kernel.
To show the last statement, note that I is contained in the set of zero-

divisors on M/(x1, . . . , xi)M , so I is contained in the union of associated
primes and hence I ⊂ ann(x) for some non-zero x ∈ M/(x1, . . . , xi)M by
Corollary 1.12. This implies that ((x1, . . . , xi)M : I)/(x1, . . . , xi)M 6= 0. �
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Proof of Theorem 2.15. Let y1, . . . , ys be a maximal M -sequence and r be
the minimal such that

Hr(M ⊗K(x1, . . . , xn)) 6= 0.

The goal is to show that r = s.
By Corollary 2.23, r is the minimal such that

Hr(M ⊗K(x1, . . . , xn, y1, . . . , ys)) 6= 0.

If IM 6= M , then by Corollary 2.25, r = s. So it suffices to show that IM 6=
M . This follows from Lemma 2.26(2) and the nonvanishing of homologies.

�

Lemma 2.26. (1) If y ∈ (x1, . . . , xn), then Hj(M ⊗K(x1, . . . , xn)) is
annihilated by y for any M and any j.

(2) If (x1, . . . , xn)M = M , then Hj(M ⊗K(x1, . . . , xn)) = 0 for any j.

Proof. (1) Here we give a different proof from the book (which uses dual
Koszul complex). Note that by Corollary 2.24, there is a long exact sequence

Hj(M⊗K(x1, . . . , xn, y))→ Hj(M⊗K(x1, . . . , xn))
y−→ Hj(M⊗K(x1, . . . , xn)).

So the statement is equivalent to that the first arrow is surjective. By the
proof of Corollary 2.23, this arrow splits.

(2) Replacing R by R/ann(M) will not change M ⊗K(x1, . . . , xn), so we
may assume that ann(M) = 0. By (x1, . . . , xn)M = M and Lemma 1.2,
there is y ∈ (x1, . . . , xn) such that (1 − y)M = 0, which implies that y =
1 ∈ (x1, . . . , xn). Then apply (1). �

Proof of Theorem 2.17. We prove the first statement by induction on n.
Suppose Hk(M ⊗K(x1, . . . , xn)) = 0, then by Corollary 2.24,

Hk−1(M ⊗K(x1, . . . , xn−1))
xn−→ Hk−1(M ⊗K(x1, . . . , xn−1))

is surjective. Then by Nakayama’s lemma, Hk−1(M⊗K(x1, . . . , xn−1)) = 0.
By induction, Hj(M⊗K(x1, . . . , xn−1)) = 0 for j ≤ k−1. By the long exact
sequence in Corollary 2.24, Hj(M ⊗K(x1, . . . , xn)) = 0 for j ≤ k − 1.

We prove the second statement by induction on n. Suppose Hn−1(M ⊗
K(x1, . . . , xn)) = 0, then as above, Hn−2(M ⊗K(x1, . . . , xn−1)) = 0, which
implies that x1, . . . , xn−1 is an M -sequence by induction. Then by Corol-
lary 2.25,

0 = Hn−1(M⊗K(x1, . . . , xn)) = ((x1, . . . , xn−1)M : (x1, . . . , xn))/(x1, . . . , xn−1)M,

which implies that xn is not a zero-divisor of M/(x1, . . . , xn−1)M . �

3. Dimensions and depths

In this section we introduce fundamental theory on dimension and depth,
which are basic invariants measuring size of a ring or an ideal.
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3.1. Dimension theory. Recall that the length of a chain Pr ⊃ Pr−1 ⊃
· · · ⊃ P0 is r.

Definition 3.1. (1) The (Krull) dimension dimR of a ring R is defined
to be the supremum of the lengths of chains of prime ideals in R.

(2) The dimension of an ideal I is dim I = dimR/I.
(3) The codimension of an ideal I is codim I = minpirmeP⊃I dimRP .

Remark 3.2. It is clear that dim I + codim I ≤ dimR. It is not always true
that

dim I + codim I = dimR.

For example, consider R = k[x, y, z]/(xy, xz) and I = (x − 1), then R
corresponds to the union of a line (x = 0) and a plane (y = z = 0), and
I corresponds to a point (1, 0, 0). In this case, dimR = 2, dim I = 0,
codim I = 1. So we need to require some irreducibility for the equality to
be true.

Theorem 3.3. Let R be a domain finitely generated over a field, then

(1)

dimR = tr.degkR = tr.degkFrac(R).

(2) dimR equals to the length of any maximal chains of prime ideals.
(3)

dim I + codim I = dimR.

Idea of proof. The proof uses the Noether normalization theorem: if Pr ⊃
Pr−1 ⊃ · · · ⊃ P0 a maximal chain (in the sense that one cannot interesest
in any more primes), then there exists a subring k[x1, . . . , xr] ' S ⊂ R such
that R is integral over S and Pi ∩ S = (x1, . . . , xi).

This implies that

dimR = r = tr.degkS = tr.degkR.

For (2) =⇒ (3), we leave to exercise. �

Theorem 3.4 (Equivalent definitions for dimension of a local ring). Let
(R,m, k) be a local ring. Then dimR is equal to the following values:

(1) The minimal number d such that there exists elements f1, . . . , fd ∈ m
not contained in any other primes in R (such f1, . . . , fd is called a
system of parameters.);

(2) dimR equals to the length of any maximal chains of prime ideals.
(3) 1+deg(dimk(m

n/mn+1)), here dimk(m
n/mn+1) coincides with a poly-

nomial in n if n >> 0.

3.2. Hilbert fuctions/polynomials. Here we explain more about the Hilbert
function/polynomial. Consider the polynomial ring S = k[x1, . . . , xn] and
a finitely generated graded S-module M =

⊕
i∈ZMi (Recall that “graded”

means that fMi ⊂ Mi+d if f is homogenous of degree d). Then we can
consider the Hilbert function HM (d) = dimkMd (Why finite?).

Lemma 3.5. There exists d0 such that HM (d) is a polynomial in d if d ≥ d0.
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Proof. We do induction on n. If n = 0 this is trivial (HM (d) = 0 if d >> 0).
If n > 0, then consider the multiplication map

0→ Kd →Md
xn−→Md+1 → Cd → 0.

Then K =
⊕

i∈ZKi and C =
⊕

i∈ZCi are finitely generated graded S-
modules. As the multiplications of xn on K,C are 0, K,C are actually
finitely generated graded S/(xn)-modules. By dimension computing, we
have

HM (d+ 1)−HM (d) = HC(d)−HK(d).

RHS is a polynomial for d ≥ d0 by induction hypothesis. So HM (d) is a
polynomial for d ≥ d0. �

To conclude that dimk(m
n/mn+1) coincides with a polynomial in n if

n >> 0, we apply this lemma to M =
⊕

i≥0m
i/mi+1.

3.3. Regular local rings. We first give some useful corollaries.

Corollary 3.6. Let (R,m, k) be a local ring. Then dimR ≤ dimk m/m
2.

Proof. By Nakayama’s lemma, dimk m/m
2 is the number of a minimal set

of generators of m. �

Corollary 3.7. Let R be ring and I = (x1, . . . , xr) 6= R. If P is minimal
among all primes containing I, then codimP ≤ r. In particular, codim I ≤
r.

Proof. Apply Theorem 3.4 to RP . �

Corollary 3.8. Let (R,m) be a local ring and x ∈ m not a zero-divisor.
Then codim(x) = 1 and dimR/(x) = dimR− 1.

Proof. By Corollary 3.7, codim(x) ≤ 1. If codim(x) = 0, then (x) is
contained in a minimal prime, which implies that x is a zero-divisor (Re-
mark 1.11), a contradiction.

By definition, d = dimR/(x) ≤ dimR − codim(x) = dimR − 1. On
the other hand, if x̄1, . . . , x̄d is a system of parameters of dimR/(x), then
(x, x1, . . . , xr) ⊂ m is not contained in other primes, so dimR ≤ d+ 1. �

Definition 3.9. A local ring (R,m, k) is regular if dimR = dimk m/m
2,

or equivalently, m is generated by d = dimR elements f1, . . . , fd (called a
regular system of parameters). A ring is regular if its localization at every
prime is regular.

Example 3.10. k[x1, . . . , xn] is regular, k[x, y]/(x2 − y3) is not regular.

The following tells that a regular system is actually a regular sequence.

Corollary 3.11. Let (R,m, k) be a regular local ring and f1, . . . , fd a regular
system of parameters, then f1, . . . , fd is a regular sequence.

Proof. We prove by induction on i that (1) R/(f1, . . . , fi) is a regular lo-
cal ring and dimR/(f1, . . . , fi) = d − i, (2) fi+1 is not a zero-divisor on
R/(f1, . . . , fi).

Note that (1) holds for i = 0 By the next corollary, a regular local ring is
a domain, so if (1) holds for i, then (2) holds for i.
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Finally, if (2) holds for i, then (1) holds for i + 1 by Corollary 3.8, as
dimR/(f1, . . . , fi+1) = dimR/(f1, . . . , fi) − 1 = d − i − 1 and its maximal
ideal is generated by d− i− 1 elements. �

Corollary 3.12. Let (R,m, k) be a regular local ring. Then R is a domain.

Proof. We do induction on d = dimR. If d = 0, then m = 0 and R is a field.
If d > 0, then m 6= m2 and m is not minimal. So we can find x ∈ m not
in m2 and not in any minimal primes of R (Why?). Consider S = R/(x).
Then dimS < dimR and dimS ≥ dimR − 1, so dimS = dimR − 1. Take
n = m ∩ S. Note that n/n2 = m/(m2 + (x)) ⊂ m/m2 is a proper subspace,
it can be generated by d − 1 element, so S is regular of dimension d − 1.
By induction hypothesis, S is a domain. So (x) is prime. There exists a
minimal prime Q ( (x). For any y ∈ Q, y = ax and x 6∈ Q, so a ∈ Q. This
implies that Q = xQ, so Q = 0 by Nakayama’s lemma. �

3.4. Depth versus codimension, Cohen–Macaulay rings.

Proposition 3.13. Let R be a ring and I an ideal. Then depth(I,R) ≤
codim I.

The geometric meaning of this proposition is easy to understand: if V (I)
is contained in r hypersurfaces intersecting “properly”, then its codimension
is at most r.

Proof. Let x1, . . . , xr be a maximal regular sequence in I. Since x1 is a non-
zero-divisor, x1 is not contained in any minimal primes, so codim I/(x1) ≤
codim I − 1. By induction, codim I/(x1) ≥ depth(I/(x1), R/(x1)) = n −
1. �

So it is interesting to investigate the equality case.

Definition 3.14. R is a Cohen–Macaulay ring if depth(I,R) = codim I for
every proper ideal I.

Theorem 3.15. R is Cohen–Macaulay iff depth(P,R) = codimP for every
maximal ideal P .

Proof. It suffices to show that if depth(P,R) = codimP for every maximal
ideal P , then depth(I,R) ≥ codim I.

We first show that depth(I,R) can be localized, that is, there exists a
maximal ideal P such that depth(I,R) = depth(IP , RP ). Using the Koszul
complex (Theorem 2.15), depth(I,R) is the minimal integer r such that
Hr(K(x1, . . . , xn)) 6= 0, where I = (x1, . . . , xn), so there exists a maximal
ideal P such that Hr(K(x1, . . . , xn))P 6= 0, which implies that depth(I,R) =
depth(IP , RP ).

So after localization, we may assume that (R,P ) is a local ring.
If P is the only prime containing I, then codimP = codim I by definition.

We claim that depthP = depth I. It suffices to show that depthP ≤ depth I.
As R/I is a local ring which has only one prime P , it can be shown that
P k ⊂ I for some integer k (consider the radical of 0). Let x1, . . . , xr be a
maximal regular sequence in P , then xk1, . . . , x

k
r ∈ I, which is also a regular

sequence (see Exercise). So depthP ≤ depth I.
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Suppose that P is the only prime containing I. By the Noetherian induc-
tion, we may assume that I is maximal among those satisfying depth(I,R) <
codim I. We can take an element x ∈ P but not in any minimal primes con-
taining I, then depth(I + (x), R) = codim(I + (x)) ≥ codim I + 1. So we
finish the proof by showing r = depth(I + (x), R) ≤ depth(I,R) + 1. Sup-
pose I = (x1, . . . , xn) and I + (x) = (x1, . . . , xn, x). By the Koszul complex
(Theorem 2.15), Hj(K(x1, . . . , xn, x)) = 0 for j < r, which implies that
Hj(K(x1, . . . , xn)) = 0 for j < r − 1 by Corollary 2.24 and Nakayama’s
lemma, so depth(I,R) ≥ r − 1. �

Finally we prove a property of CM ring.

Theorem 3.16. Let (R,m) be a local ring and x ∈ m is not a zero-divisor.
Then R is CM iff R/(x) is CM.

Proof. Note that R is CM iff depthP = dimR, and dimR = dimR/(x) + 1.
So it suffices to show that depth(P,R) = depth(P/(x), R/(x))+1. It is clear
(Why?). �

4. Minimal resolutions and Auslander–Buchbaum formula

4.1. Free resolutions.

Definition 4.1 (Projective/free resolution). A projective resolution of an
R-module M is a complex of projective modules

F : · · · → Fn → · · · → F1
φ1−→ F0

which is exact and coker(φ1) = M . Sometimes we also denote this by

F : · · · → Fn → · · · → F1
φ1−→ F0(→M → 0).

F is a free resolution if all Fi are free. The length of F is the maximal n
such that Fn 6= 0 (may be ∞).

Roughly speaking, F0 gives information of generators of M , F1 gives in-
formation of relations among generators, and so on.

Definition 4.2 (Projective dimension, global dimension). The projective
dimension pd(M) is defined to be the minimum of the lengths of projective
resolutions of M . The global dimension gldim(R) is the supremum of pd(M)
for all R-module M .

Theorem 4.3 (Auslander). gldim(R) ≤ n iff pd(M) ≤ n for any finitely
generated M .

So it suffices to consider only finitely generated M .
For local rings (and graded rings), the notion of projective modules and

free modules coincides.

Theorem 4.4. Let M be a finitely generated module over a Noetherian ring
R. Then TFAE:

(1) M is projective.
(2) MP is free for any maximal ideal P .
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Example 4.5 (Koszul complex and free resolution). If x1, . . . , xn is a regular
sequence of R, then K(x1, . . . , xn) is a free resolution of R/(x1, . . . , xn) (ev-
ery higher homology vanishes). In particular, if (R,m) is a regular local ring,
take x1, . . . , xn to be a minimal set of generators of m, then K(x1, . . . , xn)
is a free resolution of k = R/m.

4.2. Minimal free resolutions. Now we turn to the notion of minimal free
resolution. An economic way to construct free resolution is to take minimal
generators each time.

Definition 4.6 (Minimal free resolution). Let (R,m) be a local ring. A
complex

F : · · · → Fn
φn−→ Fn−1 → . . .

is minimal if φn(Fn) ⊂ mFn−1.

The following lemma tells that this definition coincides with what we de-
scribed above, that is, minimal resolution means taking minimal generators.

Lemma 4.7. A free resolution

F : · · · → Fn
φn−→ Fn−1

φn−1−−−→ Fn−2 · · · → F1
φ1−→ F0(

φ0−→M → 0).

over a local ring is minimal iff for each n, a basis of Fn−1 maps onto a
minimal set of generators of coker(φn) = im(φn−1).

Proof. Consider the maps

Fn
φn−→ Fn−1 → coker(φn)

and
Fn−1/mFn−1 → coker(φn)/mcoker(φn).

This is surjective and the kernel is im(φn)/mFn−1. So F is minimal iff the
above map is isomorphism, iff a basis of Fn−1/mFn−1 maps onto a basis of
coker(φn)/mcoker(φn). Then use Nakayama’s lemma. �

Also one might wonder that minimal resolution has minimal length. This
is true by the following corollary.

4.3. Minimal free resolutions versus projective dimensions.

Corollary 4.8. Let (R,m, k) be a local ring and M a finitely generated
R-module. Then pd(M) is the length of every minimal free resolution of
M . Furthermore, pd(M) is the smallest i such that TorRi+1(k,M) = 0. In
particular, gldimR = pd(k).

Proof. Take i0 the minimal such that TorRi+1(k,M) = 0.

Take a free resolution of M of length pd(M), then TorRi+1(k,M) = 0 for
i ≥ pd(M). So pd(M) ≥ i0.

On the other hand, suppose that

F : 0→ Fn
φn−→ Fn−1 → Fn−2 · · · → F1

φ1−→ F0(→M → 0).

is a free resolution of length n, then n ≥ pd(M) ≥ i0.
F is minimal iff k⊗F has 0 differentials, which implies that TorRi+1(k,M) =

k⊗Fi+1. In this case TorRi+1(k,M) = 0 iff Fi+1 = 0 iff i ≥ n. So F is minimal
iff n = i0 = pd(M).



18 CHEN JIANG

For the last statement, it suffices to show that pd(k) ≥ pd(M) for every
M , which is equivalent to TorRi+1(k,M) = 0 for i ≥ pd(k). This can be
proved by taking a free resolution of k. �

Corollary 4.9. If R is a regular local ring of dimension n, then gldim(R) =
n. That is, every finitely generated module has a free minimal resolution of
length ≤ n.

Proof. It suffices to show that pd(k) = n. Take x1, . . . , xn to be a minimal
set of generators in m, it is a regular sequence by Corollary 3.11, then we saw
that K(x1, . . . , xn) is a minimal (Why? Check!) free resolution of length
n. �

Remark 4.10 (Local rings vs graded rings). Let R =
⊕

i≥0Ri a graded ring

finitely generated over a field R0 and m =
⊕

i≥1Ri the homogenous maximal

ideal. Then all results holds for (R,m) and graded R-module M .

Corollary 4.11 (Hilbert syzygy theorem). Let k be a field. Every finitely
generated graded module of k[x1, . . . , xn] has a graded free minimal resolution
of length ≤ n.

By the virtue of the Hilbert syzygy theorem, we can compute the Hilbert
polynomial of a graded module M by HM (d) =

∑
i(−1)iHFi(d), where F →

M is a graded free minimal resolution.

4.4. Auslander–Buchbaum formula. Finally, we introduce the Auslander–
Buchbaum formula connecting projective dimension and depth.

Theorem 4.12 (Auslander–Buchbaum formula). Let (R,m) be a local ring
and M a finitely generated R-module of finite projective dimension. Then

pd(M) = depth(m, R)− depth(m,M).

If R is regular, then m = (x1, . . . , xn) is generated by a regular sequence
(Corollary 3.11). depth(m, R) = n. K(x1, . . . , xn) is a free resolution of k,
so TorRi+1(k,M) = Hn−i−1(M ⊗ K(x1, . . . , xn)). Corollary 4.8 says that

pd(M) is the minimal i such that TorRi+1(k,M) = 0. Theorem 2.15 says
that depth(m,M) is the minimal r such that Hr(M ⊗K(x1, . . . , xn)) 6= 0.
So the equality follows.

Here note that a finitely generated M is not always of finite projective
dimension, e.g. k for non-regular local ring (Theorem 4.13).

Proof. We do induction on pd(M). If pd(M) = 0, then M is free and it’s
clear.

If pd(M) > 0, consider 0 → N → F → M → 0 be the first step of
a minimal free resolution. Then pd(N) = pd(M) − 1. So by induction
hypothesis, it suffices to show that d := depth(m, N) = depth(m,M) + 1.

Take x1, . . . , xn to be generators of m, then consider the Koszul complex
K(x1, . . . , xn) = K(x). We have a long exact sequence

· · · → H i−1(F⊗K(x))→ H i−1(M⊗K(x))→ H i(N⊗K(x))→ H i(F⊗K(x))

Since N and F have depth ≥ d, H i(F ⊗ K(x)) = H i(N ⊗ K(x)) = 0 for
i < d, which implies that H i(M ⊗ K(x)) = 0 for i < d − 1. To prove
depth(m,M) = d − 1, it remains to show that Hd−1(M ⊗ K(x)) 6= 0. As
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Hd(N⊗K(x)) 6= 0, it suffices to show that Hd(N⊗K(x))→ Hd(F ⊗K(x))
is zero map.

If pd(N) > 0, then depth(m, F ) = depth(m, R) = d + pd(N) > d, so
Hd(F ⊗ K(x)) = 0. If pd(N) = 0, then N is free. So this map becomes
N ⊗ Hd(K(x)) → F ⊗ Hd(K(x)) where im(N) ⊂ mF by minimality of
free resolution. So this map is zero as Hd(K(x)) is annihilated by m by
Lemma 2.26. �

We close this lecture by the following application of the Auslander–Buchbaum
formula.

Theorem 4.13. A local ring has finite global dimension iff it is regular.

Proof. We only need to show that if (R,m, k) has finite global dimension,
then it is regular.

Let x1, . . . , xn be a minimal set of generators of m. From the principal
ideal theorem, dimR ≤ n. It suffices to show that dimR ≥ n.

By Proposition 3.13, it suffices to show that depth(m, R) ≥ n. By the
Auslander–Buchbaum formula,

pd(k) = depth(m, R)− depth(m, k) = depth(m, R).

It suffices to show that pd(k) ≥ n, that is, the minimal free resolution of k
has length at most n. So we can consider the Koszul complex K(x1, . . . , xn),
which has length n. The problem here is that it is not a resolution (not ex-
act), unlessR is regular (Example 4.5). So we need to compareK(x1, . . . , xn)
with minimal free resolutions of k, and show that the length of any mini-
mal free resolutions of k (which is pd(k)) is at least n. This is done by the
following lemma. �

Lemma 4.14. Let (R,m, k) be a local ring and x1, . . . , xn a minimal set
of generators of m. Then K(x1, . . . , xn) is a subcomplex of the minimal free
resolution of k.

Remark 4.15. In fact, all minimal free resolutions are isomorphic to each
other.

Proof. Let
F : · · · → F1 → F0

be the minimal free resolution of k. Then there is a comparison map of
complexes φ : K(x1, . . . , xn)→ F , namely,

K(x) : 0 //

��

∧0Rn //

φn
��

. . . //

��

∧nRn //

φ0
��

k

=

��

// 0

F : . . . // Fn // . . . // F0
// k // 0

Here the map φi :
∧n−iRn → Fi is defined by lifting∧n−iRn

d //

φi
��

∧n−i+1Rn

φi−1

��
Fi

ψ // Fi−1
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as φi−1d(
∧n−iRn) ⊂ imψ and

∧n−iRn is free. It suffices to show that φi
splits. For i = 0, 1 this is trivial, in which case φi is isomorphic, as x1, . . . , xn
is a minimal set of generators.

Suppose that φi−1 splits, it suffices to show that

R/m⊗ φi : R/m⊗
∧n−i

Rn → R/m⊗ Fi

is injective, because then by Nakayama’s lemma the basis of
∧n−iRn maps

to a subset of a basis of Fi, which gives the splitting naturally. Note that
the image of d is in m(

∧n−i+1Rn), d induces a map

d̄ : R/m⊗
∧n−i

Rn → m/m2 ⊗
∧n−i+1

Rn.

As R/m ⊗ φi−1 is injective by induction hypothesis, it suffices to show d̄ is
injective. This is linear algebra and we omit the proof. �
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